【題目】如圖,在平面直角坐標(biāo)系中, 是橢圓 的右頂點(diǎn), 是上頂點(diǎn), 是橢圓位于第三象限上的任一點(diǎn),連接, 分別交坐標(biāo)軸于, 兩點(diǎn).
(1)若點(diǎn)為左焦點(diǎn)且直線平分線段,求橢圓的離心率;
(2)求證:四邊形的面積是定值.
【答案】(1) (2)見解析
【解析】試題分析:(1)根據(jù)題意得可解出C點(diǎn)坐標(biāo),再得到 ,根據(jù)三點(diǎn)共線可得到離心率;(2)四邊形的面積,根據(jù)點(diǎn)點(diǎn)距可求線段長度,即可求得面積表達(dá)式,進(jìn)而求得定值。
解析:
(1)設(shè)橢圓焦距為,則, ,直線的方程為,
聯(lián)立方程組 ,即,
所以,
又中點(diǎn) ,因平分線段,所以, , 三點(diǎn)共線,
則,所以,則 ,
所以.
(2)設(shè),則直線的方程為,所以;
直線的方程為,所以;
所以, ,
因?yàn)?/span>,
則四邊形的面積
,
所以四邊形的面積是定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的值;
(2)若函數(shù)有正數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)a的取值范圍;
(3)若對于任意的時,不等式恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實(shí)數(shù),已知奇函數(shù),
(1)求的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形, , , 底面.
(1)證明:平面平面;
(2)若二面角的大小為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)的圖象與直線相切,求的值;
(2)求在區(qū)間上的最小值;
(3)若函數(shù)有兩個不同的零點(diǎn), ,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)的圖象恒過(0,0)和(1,1)兩點(diǎn),則稱函數(shù)為“0-1函數(shù)”.
(1)判斷下面兩個函數(shù)是否是“0-1函數(shù)”,并簡要說明理由:
①; ②.
(2)若函數(shù)是“0-1函數(shù)”,求;
(3)設(shè) ,定義在R上的函數(shù)滿足:① 對 , R,均有;② 是“0-1函數(shù)”,求函數(shù)的解析式及實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
()求的單調(diào)增區(qū)間.
()求在的最大值,及此時的取值.
()若為的一個零點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com