分析 作出不等式組對應(yīng)的平面區(qū)域,利用平面向量的數(shù)量積進行轉(zhuǎn)化,利用數(shù)形結(jié)合進行求解即可.
解答 解:$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OM}|}$=|$\overrightarrow{OA}$|•$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OM}|•|\overrightarrow{OA}|}$=|$\overrightarrow{OA}$|•cos<$\overrightarrow{OA}$,$\overrightarrow{OM}$>,
作出不等式組對應(yīng)的平面區(qū)域如圖:
由圖象知當M位于B時$\overrightarrow{OA}$,$\overrightarrow{OM}$的夾角最小,
當M位于C時$\overrightarrow{OA}$,$\overrightarrow{OM}$的夾角最大,
由$\left\{\begin{array}{l}{x=2}\\{x+y=4}\end{array}\right.$,即$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,此時B(2,2),則cos<$\overrightarrow{OA}$,$\overrightarrow{OM}$>=$\frac{\sqrt{2}}{2}$,
由$\left\{\begin{array}{l}{x+y=4}\\{x-y=-2}\end{array}\right.$,即$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,此時C(1,3),則cos<$\overrightarrow{OA}$,$\overrightarrow{OM}$>=$\frac{1}{\sqrt{{1}^{2}+{3}^{2}}}$=$\frac{1}{\sqrt{10}}$=$\frac{\sqrt{10}}{10}$,
故-$\frac{\sqrt{10}}{10}$≤cos<$\overrightarrow{OA}$,$\overrightarrow{OM}$>≤$\frac{\sqrt{2}}{2}$,
即-$\frac{\sqrt{10}}{10}$≤$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OM}|}$≤$\frac{\sqrt{2}}{2}$,
故答案為:[-$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$]
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用平面向量的數(shù)量積進行轉(zhuǎn)化以及利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2-$\frac{1}{{2}^{n}}$ | B. | 1-$\frac{1}{{2}^{n}}$ | C. | 1-$\frac{1}{{2}^{n+1}}$ | D. | $\frac{1}{{2}^{n}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [a2,+∞) | B. | (0,a2] | C. | (a2,+∞) | D. | (0,a2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 288 | B. | 144 | C. | 216 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com