分析 (1)利用數(shù)量積運(yùn)算性質(zhì)、倍角公式、和差公式可得f(x),再利用正弦函數(shù)的單調(diào)性與值域即可得出最值;
(2)利用正弦函數(shù)的單調(diào)性即可得出.
解答 解:(1)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=(cosx+sinx)(cosx-sinx)+2$\sqrt{3}$sinxcosx
=cos2x+$\sqrt{3}$sin2x
=2$sin(2x+\frac{π}{6})$.
當(dāng)2x+$\frac{π}{6}$=$2kπ+\frac{π}{2}$,即x=$kπ+\frac{π}{6}$時(shí),$sin(2x+\frac{π}{6})$取得最大值1.因此函數(shù)f(x)取得最大值2.
當(dāng)2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$,即x=kπ-$\frac{π}{3}$時(shí),$sin(2x+\frac{π}{6})$取得最小值-1.因此函數(shù)f(x)取得最小值-2.
(2)由$\frac{π}{2}+2kπ$≤$2x+\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得kπ+$\frac{π}{6}$≤x≤$\frac{2π}{3}$+kπ,k∈Z.
∴函數(shù)f(x)的單調(diào)遞減區(qū)間是[kπ+$\frac{π}{6}$,$\frac{2π}{3}$+kπ],k∈Z.
點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、倍角公式、和差公式、正弦函數(shù)的單調(diào)性與值域,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [5a,-2a) | B. | (-∞,5a]∪(-2a,+∞) | C. | (-2a,5a]? | D. | (-∞,5a] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{π}^{2}}{18}$ | B. | $\frac{{π}^{2}}{9}$ | C. | $\frac{\sqrt{2}}{6}π$ | D. | $\frac{π}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com