4.不等式-4+x-x2<0的解集為R.

分析 通過計算不等式對應(yīng)的判別式△<0,判定該不等式解為一切實數(shù).

解答 解:整理,得x2-x+4>0.△<0,
所以,原不等式的解為一切實數(shù).
故答案為:R.

點評 本題考查了求一元二次不等式的解集的問題,解題時應(yīng)先利用判別式判定對應(yīng)方程解的情況,是容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=$\sqrt{2}$.CF與平面 ABCD垂直,CF=2.求二面角B-AF-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過點P(-1,1)的直線l上的動點Q到原點的最短距離為$\sqrt{2}$
(1)求直線l的方程;
(2)若曲線C1和直線l交于M,N兩點,且以MN為直徑的圓過坐標(biāo)原點O,當(dāng)S△OMN=$\frac{2\sqrt{10}}{3}$時,求曲線C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=log3x.
(1)作出這個函數(shù)的圖象;
(2)當(dāng)0<a<2時,有f(a)>$\frac{1}{2}$,利用圖象求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.三棱錐P-ABC中,PO⊥面ABC,垂足為O,若PA⊥BC,PC⊥AB,求證:
(1)AO⊥BC
(2)PB⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)$\overrightarrow{a}$=(cosx+sinx,$\sqrt{3}$cosx),$\overrightarrow$=(cosx-sinx,2sinx),其中x∈R.函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的最大值、最小值及相應(yīng)x的值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在直三棱柱ABC-A1B1C1中,D,E分別是BC和CC1的中點,已知AB=AC=AA1=4,∠BAC=90°.
(Ⅰ) 求證:B1D⊥平面AED;
(Ⅱ) 求二面角B1-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)等差數(shù)列{an}的公差是d,其前項和是Sn,若a1=d=1,則$\frac{{S}_{n}+8}{{a}_{n}}$的最小值是( 。
A.$\frac{9}{2}$B.$\frac{7}{2}$C.2$\sqrt{2}$+$\frac{1}{2}$D.2$\sqrt{2}$-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在圖中,二次函數(shù)y=bx2+ax與指數(shù)函數(shù)y=($\frac{a}$)x的圖象只可為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案