6.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+3log2(x+1)+m(m為常數(shù)),則m=0,f(-1)=-5.

分析 f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+3log2(x+1)+m(m為常數(shù)),利用f(0)=m=0.可得m,可得f(1),利用f(-1)=-f(1)即可得出.

解答 解:∵f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+3log2(x+1)+m(m為常數(shù)),
∴f(0)=m=0.
∴當(dāng)x≥0時,f(x)=2x+3log2(x+1),
∴f(1)=2+3=5.
∴f(-1)=-f(1)=-5.
故答案分別為:0,-5.

點評 本題考查了函數(shù)奇偶性求值,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知y=f(x)是定義在[1,4)上的函數(shù),則函數(shù)y=f(2x+1)的定義域為[0,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知A(0,2),B(1,$\sqrt{3}$),B′為點B關(guān)于y軸的對稱點
(1)求△ABB′的外接圓方程
(2)過點$P(1,\sqrt{2})$作△ABB′的外接圓的兩條互相垂直的弦AC,BD,求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知A(1,-2),B(a,-1),C(-b,0)三點共線,其中a>0,b>0,則a與b的關(guān)系式為2a+b=1,$\frac{1}{a}$+$\frac{2}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將函數(shù)y=sin(x-$\frac{π}{3}$),x∈R的圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個單位,所得函數(shù)的解析式為y=sin($\frac{1}{2}$x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2-(a-1)x,a∈R.
(1)若f(1)=1,求f(x)在x∈(-∞,0)時的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+1)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.k>3是方程$\frac{{x}^{2}}{k-3}-\frac{{y}^{2}}{k-7}$=1表示的曲線是橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有一球內(nèi)接圓錐,底面圓周和頂點均在球面上,其底面積為3π,已知球的半徑R=2,則此圓錐的體積為π或3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知P是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一點,F(xiàn)1,F(xiàn)2為橢圓的焦點.
(1)若∠F1PF2=90°,求△PF1F2的面積;
(2)求|PF1|•|PF2|的最大值.

查看答案和解析>>

同步練習(xí)冊答案