20.設(shè)空間直角坐標(biāo)系中A(1,0,0),B(0,1,0),C(1,1,0),則點(diǎn)P(x,y,3)到平面ABC的距離是( 。
A.0B.1C.2D.3

分析 判斷A,B,C與P的位置關(guān)系,然后求解點(diǎn)P(x,y,3)到平面ABC的距離.

解答 解:空間直角坐標(biāo)系中A(1,0,0),B(0,1,0),C(1,1,0),
可知A,B,C都在平面x0y平面,
點(diǎn)P(x,y,3)是與x0y平面平行,距離為3,所以點(diǎn)P(x,y,3)到平面ABC的距離是3.
故選:D.

點(diǎn)評(píng) 本題考查空間點(diǎn)線面距離公式的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)x1,x2,x3,x4,x5是1,2,3,4,5的任一排列,則x1+2x2+3x3+4x4+5x5的最小值是35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.sin(-435°)的值等于$-\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.先把函數(shù)y=cosx的圖象上所有點(diǎn)向右平移$\frac{π}{3}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到的函數(shù)圖象的解析式為( 。
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,雙曲線x2-y2=1的漸近線方程是y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1+x,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax+b,a,b∈R,A={x|f(x)=x,x∈R},B={x|f[f(x)]=x,x∈R}
(1)寫(xiě)出集合A與B之間的關(guān)系,并證明;
(2)當(dāng)A={-1,3}時(shí),用列舉法表示集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知等差數(shù)列{an}滿足a3=5,a5+a7=22,等差數(shù)列{an}的前n項(xiàng)和Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)an和前n項(xiàng)和Sn
(Ⅱ)若bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知等比數(shù)列{an}的公比為3,且a1+a3=10,則a2a3a4的值為( 。
A.27B.81C.243D.729

查看答案和解析>>

同步練習(xí)冊(cè)答案