15.設(shè)函數(shù)f(x)=ax3-3ax2+b(a>0)在區(qū)間[1,4]上有最大值23,最小值3,求a,b的值.

分析 對f(x)進行求導(dǎo),令f′(x)=0,求出極值點,利用導(dǎo)數(shù)研究函數(shù)的最值問題,同時要驗證端點問題,解出a,b.

解答 解:∵f(x)=ax3-3ax2+b,x∈[1,4],
∴f′(x)=3ax2-6ax=3ax(x-2),a>0,
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
∴f(x)在[1,2)遞減,在[2,4]遞增,
f(x)在x=1或x=4處取最大值,而f(1)=-2a+b,f(4)=16a+b,
f(4)>f(1),f(x)max=f(4)=16a+b=23①,
f(x)在x=2處取極小值,也是最小值,f(2)=-4a+b=3②
由①②解得:a=1,b=7.

點評 本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過比較函數(shù)在(a,b)內(nèi)所有極值與端點函數(shù)f(a),f(b) 比較而得到的,此題逆向思維,已知最大值和最小值確定f(x)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題p:?x∈(0,+∞),2x>3x,命題q:?x0∈(0,+∞),x${\;}_{0}^{2}$>x${\;}_{0}^{3}$,則下列命題中的真命題是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow{OA}=({{{log}_2}cosθ})\overrightarrow{OB}-({{{log}_2}sinθ})\overrightarrow{OC}$,若A,B,C共線,則sinθ+cosθ=( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{3\sqrt{5}}}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{{3\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若{an}為等差數(shù)列,a15=18,a60=27,則a75=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若z∈C,|z|=1,復(fù)數(shù)w=z2-i+1,則|w|的取值范圍是[$\sqrt{2}$-1,$\sqrt{2}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等比數(shù)列{an}為遞增數(shù)列,其前n項和為Sn,若S3=7,a2=2,則a3+a4+a5=( 。
A.$\frac{7}{4}$B.$\frac{7}{8}$C.28D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.πB.$\frac{3π}{2}$C.$\frac{7π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.用“在”或“不在”填入空格:點M(-1,1)在函數(shù)f(x)=x2的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若直線ax+2by-4=0(a,b∈R)始終平分圓x2+y2-4x-2y-4=0的周長,則ab的取值范圍是ab≤1.

查看答案和解析>>

同步練習(xí)冊答案