9.給出下列命題:
①設(shè)a,b為非零實(shí)數(shù),則“a<b”是“$\frac{1}{a}>\frac{1}$”的充分不必要條件;
②在△ABC中,若A>B,則sinA>sinB;
③命題“?x∈R,sinx<1”的否定為“?x0∈R,sinx0>1”;
④命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“x+y<5,則x<2且y<3”.
其中真命題的個數(shù)是( 。
A.3B.2C.1D.0

分析 當(dāng)a,b異號時,“a<b”⇒“$\frac{1}{a}$<$\frac{1}$”,即可判斷①的真假;
利用正弦定理判斷②的真假;
利用全稱命題與特稱命題的否定關(guān)系判斷③真假;
寫出命題的逆否命題,判斷④的真假.

解答 解:對于①,當(dāng)b>0>a時,可得 $\frac{1}{a}$<$\frac{1}$,此時a,b為非零實(shí)數(shù),
則“a<b”是“$\frac{1}{a}>\frac{1}$”的充分不必要條件不成立,①錯誤.
對于②,在△ABC中,若A>B,則a>b,
由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$=2R,
得2RsinA>2RsinB,
即sinA>sinB成立,②正確;
對于③,命題“?x∈R,sinx<1”的否定為“?x0∈R,sinx0>1”;
不滿足命題的否定形式,所以③不正確;
對于④,命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“x+y<5,則x<2或y<3”.所以④不正確;
正確的命題有1個.
故選:C.

點(diǎn)評 本題考查命題的真假的判斷與應(yīng)用,充要條件以及正弦定理四種命題的逆否關(guān)系,是基礎(chǔ)知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知點(diǎn)P(3,1)在矩陣A=$[\begin{array}{l}{a}&{2}\\&{-1}\end{array}]$ 變換下得到點(diǎn)P′(5,-1).試求矩陣A和它的逆矩陣A-1
(2)在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=m+2cosα\\ y=2sinα\end{array}$(α為參數(shù),m為常數(shù)).以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.若直線l與圓C有兩個公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}滿足a1=2,an+1=2an-n+1,n∈N*
(1)求數(shù)列{an-n}的通項(xiàng)公式;
(2)若數(shù)列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+2)}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,圓O的割線PA過圓心O交圓于另一點(diǎn)B,弦CD交OB于點(diǎn)E,且∠P=∠OCE,PB=OA=2,則PE的長等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時,函數(shù)解析式f(x)=$\frac{1}{{4}^{x}}$-$\frac{a}{{2}^{x}}$(a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,a2=c2-b2-$\sqrt{3}$ab,則角C的度數(shù)為(  )
A.60°B.45°或135°C.150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{3}$x3+mx2-3m2x+1
(1)當(dāng)m=1時,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程
(2)若f(x)在區(qū)間(-2,3)上是減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=4sin(ωx+φ)(ω>0,-π<φ<π)的圖象各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到g(x)=4sinx的圖象.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{2π}{5}$]上的值域;
(3)求證:對任意λ>0,都存在μ>0,使f(x)+x-4<0對x∈(-∞,λμ)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在極坐標(biāo)系中,將圓ρ=2沿著極軸正方向平移兩個單位后,再繞極點(diǎn)逆時針旋轉(zhuǎn)$\frac{π}{4}$弧度,則所得的曲線的極坐標(biāo)方程為ρ=4cos(θ-$\frac{π}{4}$).

查看答案和解析>>

同步練習(xí)冊答案