分析 (1)利用三角恒等變換化簡f(x)的解析式,再利用正弦函數(shù)的增區(qū)間,求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)利用y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得m的范圍.
解答 解:∵函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a=$\sqrt{3}$sin(2x+$\frac{π}{2}$)+sin2x+a
=$\sqrt{3}$cos2x+sin2x+a=2sin(2x+$\frac{π}{3}$)+a 的最大值為2+a=1,
∴a=-1.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,
可得函數(shù)的增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
(2)∵將f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]-1
=2sin(2x+$\frac{2π}{3}$)-1的圖象,
∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{2π}{3}$∈[$\frac{2π}{3}$,$\frac{5π}{3}$],
∴當(dāng)2x+$\frac{2π}{3}$=$\frac{2π}{3}$時(shí),g(x)取得最大值為$\sqrt{3}$-1;
當(dāng)2x+$\frac{2π}{3}$=$\frac{3π}{2}$時(shí),g(x)取得最小值-3,
故-3≤m≤$\sqrt{3}$-1.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的增區(qū)間,y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7,8) | B. | [4$\sqrt{3}$,8) | C. | [4$\sqrt{3}$,+∞) | D. | (7,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期為π的奇函數(shù) | B. | 周期為π的偶函數(shù) | ||
C. | 周期為$\frac{π}{2}$的奇函數(shù) | D. | 周期為$\frac{π}{2}$的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2sin(2x-$\frac{5π}{6}$) | B. | f(x)=2sin(2x-$\frac{π}{6}$) | C. | f(x)=2sin(2x+$\frac{5π}{6}$) | D. | f(x)=2sin(2x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com