3.如圖給出的是計(jì)算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{10}$的值的一個(gè)框圖,其中菱形判斷框內(nèi)應(yīng)填入的條件是( 。
A.i>5B.i<5C.i>6D.i<6

分析 由本程序的功能是計(jì)算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{10}$的值,由S=S+$\frac{1}{2i}$,故我們知道最后一次進(jìn)行循環(huán)時(shí)的條件為i=5,當(dāng)i>5應(yīng)退出循環(huán)輸出S的值,由此不難得到判斷框中的條件.

解答 解:∵S=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{10}$,
并由流程圖中S=S+$\frac{1}{2i}$,故循環(huán)的初值為1,終值為5,步長為1,
故經(jīng)過5次循環(huán)才能算出S=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{10}$的值,
故i≤5,應(yīng)不滿足條件,繼續(xù)循環(huán),
∴應(yīng)i>5,應(yīng)滿足條件,退出循環(huán),
填入“i>5”.
故選:A.

點(diǎn)評(píng) 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,在△DEF中,M是在線段DF上,DE=3,DM=EM=2,sin∠F=$\frac{3}{5}$=,則邊EF的長為$\frac{5\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,面PCD⊥面ABCD,PC=PD=CD=2,點(diǎn)M為線段PB上異于P、B的點(diǎn).
(Ⅰ)當(dāng)點(diǎn)M為PB的中點(diǎn)時(shí),求證:PD∥平面ACM
(Ⅱ)當(dāng)二面角B-AC-M的余弦值為$\frac{\sqrt{5}}{5}$時(shí),試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A為左頂點(diǎn),B為短軸端點(diǎn),F(xiàn)為右焦點(diǎn),且AB⊥BF,則橢圓的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右頂點(diǎn)分別為A,B,右焦點(diǎn)為F,離心率$e=\frac{1}{2}$,點(diǎn)P是橢圓C上異于A,B兩點(diǎn)的動(dòng)點(diǎn),△APB的面積最大值為$2\sqrt{3}$.
(1)求橢圓C的方程;
(2)若直線AP與直線x=2交于點(diǎn)D,試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.根據(jù)下面程序框圖,當(dāng)n=2時(shí),輸出S=( 。
A.1000B.1950C.2850D.3800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上頂點(diǎn)為A(0,1),離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)A作圓M:(x+1)2+y2=r2(0<r<1)的兩條切線分別與橢圓C相交于點(diǎn)B,D(不同于點(diǎn)A).當(dāng)r變化時(shí),試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,若A=30°,B=45°,$BC=\sqrt{6}$,則AC=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|x2-4x<0},B={y|y=2x-5,x∈A},則A∩B等于(  )
A.B.(0,3)C.(-5,4)D.(0,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案