8.根據(jù)下面程序框圖,當n=2時,輸出S=( 。
A.1000B.1950C.2850D.3800

分析 模擬執(zhí)行程序,依次寫出每次循環(huán)得到的S,i的值,當i=3時,滿足條件i>2,退出循環(huán),輸出S的值為2850.

解答 解:模擬執(zhí)行程序,可得
i=0,S=0
S=1000,i=1<2;
S=1950,i=2;
S=2850,i=3>2,
退出循環(huán),輸出S=2850.
故選:C.

點評 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導(dǎo)致錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i為虛數(shù)單位,則z=$\frac{i}{1-2i}$在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z滿足(3-z)•i=2(i為虛數(shù)單位),則z=3+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知P是圓x2+y2=36的圓心,R是橢圓$\frac{x^2}{9}+\frac{y^2}{3}=1$上的一動點,且滿足$\overrightarrow{PR}=3\overrightarrow{PQ}$.
(1)求動點Q的軌跡方程
(2)若直線y=x+1與曲線Q相交于A、B兩點,求弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖給出的是計算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{10}$的值的一個框圖,其中菱形判斷框內(nèi)應(yīng)填入的條件是( 。
A.i>5B.i<5C.i>6D.i<6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若運行如圖所示程序框圖,則輸出結(jié)果S的值為( 。
A.94B.86C.73D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若(2x-1)2016=a0+a1x+a2x2+…+a2016x2016,則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=a|x|-3a-1,若命題?x∈[-1,1],使f(x)≠0是假命題,則實數(shù)a的取值范圍為( 。
A.$(-∞,\;-\frac{1}{2}]$B.$(-∞,\;-\frac{1}{2}]∪(0,\;+∞)$C.$[-\frac{1}{2},\;-\frac{1}{3}]$D.$(-∞,\;-\frac{1}{3}]∪$$[-\frac{1}{2},\;0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=(sinx-2)(cosx-2)的值域是(  )
A.[$\frac{9}{2}$-2$\sqrt{2}$,$\frac{9}{2}$+2$\sqrt{2}$]B.[$\frac{3}{2}$,$\frac{9}{2}$+2$\sqrt{2}$]C.[$\frac{3}{2}$,+∞)D.[$\frac{9}{2}$-2$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊答案