8.已知α∈(-$\frac{π}{2}$,0),且cosα=$\frac{\sqrt{5}}{5}$,則sin(π+2α)等于( 。
A.$\frac{1}{5}$B.-$\frac{3}{4}$C.$\frac{4}{5}$D.-$\frac{3}{5}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sinα的值,再利用誘導(dǎo)公式、二倍角的正弦公式,求得sin(π+2α)的值.

解答 解:∵α∈(-$\frac{π}{2}$,0),且cosα=$\frac{\sqrt{5}}{5}$,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{2\sqrt{5}}{5}$,
則sin(π+2α)=-sin2α=-2sinαcosα=-2•(-$\frac{2\sqrt{5}}{5}$)•$\frac{\sqrt{5}}{5}$=$\frac{4}{5}$,
故選:C.

點(diǎn)評 本題主要考查誘導(dǎo)公式,同角三角函數(shù)的基本關(guān)系,二倍角的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正三棱柱ABC-A1B1C1的底面邊長為4,側(cè)棱長為4,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長等于2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow a,\overrightarrow b$滿足:$\left|{\overrightarrow a}\right|=2,\left|{\overrightarrow b}\right|=1,\left|{\overrightarrow a-\overrightarrow b}\right|=\sqrt{6}$,則$\left|{\overrightarrow a+\overrightarrow b}\right|$( 。
A.$\sqrt{3}$B.$\sqrt{10}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四梭推 P-ABCD中,CD⊥平面PAD,AB∥CD,CD=4AB,AC⊥PA,M為線段CP上一點(diǎn).
(1)求證:平面ACD⊥平面PAM;
(2)若PM=$\frac{1}{4}$PC,求證:MB∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知O是銳角△ABC的外接圓圓心,∠A=60°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=m•$\overrightarrow{OA}$,則m的值為( 。
A.-$\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=1-$\frac{2}{{2}^{x}+1}$,g(x)=2sin(2x-$\frac{π}{6}$).
(1)若函數(shù)g(x)=(2x+1)•f(x)+k有零點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)對任意x1∈(0,1),總存在x2∈[-$\frac{π}{4}$,$\frac{π}{6}$],使不等式f(x1)-m•2${\;}^{{x}_{1}}$>g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a是方程x+lgx=4的根,b是方程x+10x=4的根,函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2+(a+b-4)x,若對任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是(  )
A.[$\sqrt{2}$,+∞)B.[2,+∞)C.(0,2]D.[-$\sqrt{2}$,-1]∪[$\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線y=4x2的準(zhǔn)線方程為( 。
A.x=-1B.y=-1C.x=-$\frac{1}{16}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=sinx(sinx+cosx)+cos2x.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案