判斷函數(shù)y=|sinx|在x=0處的連續(xù)性和可導(dǎo)性.
考點(diǎn):函數(shù)的連續(xù)性
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:由y=sinx在x=0處連續(xù)可推出y=|sinx|在x=0處也連續(xù),判斷可導(dǎo)性即看一下左、右求極限是否相等.
解答: 解:∵y=sinx在x=0處連續(xù),
∴y=|sinx|在x=0處也連續(xù);
lim
x→0+
|sinx|
x
=cos0=1,
lim
x→0-
|sinx|
x
=-cos0=-1,
∴y=|sinx|在x=0處不可導(dǎo).
點(diǎn)評:本題考查了函數(shù)的連續(xù)性與可導(dǎo)性的判斷,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a4+a5=8,a9+a10=28,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x-3
+
3-x
+|x-y+2010|+z2+4z+4=0,則x+y+z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀:已知a,b∈(0,+∞),a+b=1,求y=
1
a
+
2
b
的最小值.
解法如下:y=
1
a
+
2
b
=(
1
a
+
2
b
)(a+b)=
b
a
+
2a
b
+3≥3+2
2
,當(dāng)且僅當(dāng)
b
a
=
2a
b
,即a=
2
-1,b=2-
2
時取到等號,則y=
1
a
+
2
b
的最小值為3+2
2

應(yīng)用上述解法,求解下列問題:
(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=
1
a
+
1
b
+
1
c
的最小值;
(2)已知x∈(0,
1
2
),求函數(shù)y=
1
x
+
8
1-2x
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的函數(shù)y=x2-4ax+2a+6,若y≥0恒成立,則函數(shù)f(a)=2-a|a+3|的值域為( 。
A、[-
19
4
,
17
4
]
B、[-2,
17
4
]
C、[-
19
4
,4]
D、[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列四個命題:
①若m⊥n,m⊥α,則n∥α; 
②若m⊥β,α⊥β,則m∥α;
③若m⊥α,m⊥β,則α∥β;
④若m⊥n,m⊥α,n⊥β,則α⊥β.
其中正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1],設(shè)命題p:“f(x)的定義域為R”;命題q:“f(x)的值域是R”.
(1)若命題p為真,求實數(shù)a的取值范圍;
(2)若命題p為假,命題q為真時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),且f(f(x))=9x+4
(1)求f(x)的解析式;
(2)若g(x)=x2+2,求g(f(2))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是單調(diào)增函數(shù),如果實數(shù)t滿足f(t)+f(-t)<2f(1),那么t的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案