分析 (1)由題意和向量平行可得1×1-2x=0,解方程可得;
(2)由|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|可得$\overrightarrow{a}•\overrightarrow$=1×2+x=0,解方程可得.
解答 解:(1)∵$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,1),$\overrightarrow{a}$∥$\overrightarrow$,
∴1×1-2x=0,解得x=$\frac{1}{2}$;
(2)∵|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,∴|$\overrightarrow{a}$+$\overrightarrow$|2=|$\overrightarrow{a}$-$\overrightarrow$|2,
∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$,∴$\overrightarrow{a}•\overrightarrow$=0
∴$\overrightarrow{a}•\overrightarrow$=1×2+x=0,解得x=-2
點評 本題考查向量的平行與垂直,涉及向量的模長,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于點($\frac{π}{12}$,0)對稱 | B. | 關(guān)于點($\frac{5π}{12}$,0)對稱 | ||
C. | 關(guān)于直線x=$\frac{5π}{12}$對稱 | D. | 關(guān)于直線x=$\frac{π}{12}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$$\sqrt{10}$ | B. | -$\frac{4}{5}$$\sqrt{10}$ | C. | -$\sqrt{10}$ | D. | $\frac{2}{5}$$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com