分析 (1)求得K的坐標,圓的圓心和半徑,運用對稱性可得MR的長,由勾股定理和銳角的三角函數(shù),可得CK=3,再由點到直線的距離公式即可求得p=2,進而得到拋物線方程;
(2)①設(shè)出直線方程,聯(lián)立拋物線方程,運用韋達定理和向量的數(shù)量積的坐標表示,化簡整理,即可得到定點Q;
②運用弦長公式和四邊形的面積公式,換元整理,結(jié)合基本不等式,即可求得最小值.
解答 (1)解:由已知可得K(-$\frac{p}{2}$,0),圓C:(x-2)2+y2=1的圓心C(2,0),半徑r=1.
設(shè)MN與x軸交于R,由圓的對稱性可得|MR|=$\frac{2\sqrt{2}}{3}$,
于是|CR|=$\sqrt{M{C}^{2}-M{R}^{2}}$=$\sqrt{1-\frac{8}{9}}$=$\frac{1}{3}$,
即有|CK|=$\frac{|MC|}{sin∠MKC}$=$\frac{|MC|}{sin∠CMR}$=$\frac{1}{\frac{1}{3}}$=3,
即有2+$\frac{p}{2}$=3,解得p=2,則拋物線E的方程為y2=4x;
(2)①證明:設(shè)直線AB:x=my+t,A($\frac{{{y}_{1}}^{2}}{4}$,y1),B($\frac{{{y}_{2}}^{2}}{4}$,y2),
聯(lián)立拋物線方程可得y2-4my-4t=0,
y1+y2=4m,y1y2=-4t,
$\overrightarrow{OA}$$•\overrightarrow{OB}$=$\frac{9}{4}$,即有($\frac{{y}_{1}{y}_{2}}{4}$)2+y1y2=$\frac{9}{4}$,
解得y1y2=-18或2(舍去),
即-4t=-18,解得t=$\frac{9}{2}$.
則有AB恒過定點Q($\frac{9}{2}$,0);
②解:由①可得|AB|=$\sqrt{1+{m}^{2}}$|y2-y1|=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+72}$,
同理|GD|=$\sqrt{1+(-\frac{1}{m})^{2}}$|y2-y1|=$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{16}{{m}^{2}}+72}$,
則四邊形AGBD面積S=$\frac{1}{2}$|AB|•|GD|=$\frac{1}{2}$$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+72}$•$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{16}{{m}^{2}}+72}$
=4$\sqrt{(2+({m}^{2}+\frac{1}{{m}^{2}}))(85+18({m}^{2}+\frac{1}{{m}^{2}}))}$,
令m2+$\frac{1}{{m}^{2}}$=μ(μ≥2),則S=4$\sqrt{18{μ}^{2}+121μ+170}$是關(guān)于μ的增函數(shù),
則當μ=2時,S取得最小值,且為88.
當且僅當m=±1時,四邊形AGBD面積的最小值為88.
點評 本題考查拋物線的方程和性質(zhì),主要考查拋物線方程和直線方程聯(lián)立,運用韋達定理和弦長公式,同時考查直線和圓的位置關(guān)系,向量的數(shù)量積的坐標表示,具有一定的運算量,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{7}{5}$ | B. | $\frac{7}{5}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{CA}$+$\frac{1}{2}$$\overrightarrow{CB}$ | B. | 2$\overrightarrow{CA}$-2$\overrightarrow{CB}$ | C. | $\frac{1}{3}$$\overrightarrow{CA}$+$\frac{2}{3}$$\overrightarrow{CB}$ | D. | $\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充分必要條件 | D. | 非充分非必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -28 | B. | -21 | C. | 21 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com