設(shè)xa=yb=zc.且
1
a
+
1
b
=
1
c
,求證:z=xy.
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)xa=yb=zc=k>0,則a=
lgk
lgx
,b=
lgk
lgy
,c=
lgk
lgz
.代入
1
a
+
1
b
=
1
c
,即可得出.
解答: 證明:設(shè)xa=yb=zc=k>0,則a=
lgk
lgx
b=
lgk
lgy
,c=
lgk
lgz

1
a
+
1
b
=
1
c
,∴
lgx
lgk
+
lgy
lgk
=
lgz
lgk

∴l(xiāng)g(xy)=lgz,
∴z=xy.
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+ax+2b=0的兩根分別在區(qū)間(0,1)與(1,2),則
b-2
a-1
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖1是將正方體沿著共點(diǎn)的三條棱的中點(diǎn)A、B、C截 去一個(gè)三棱錐后剩下的幾何體.畫出該幾何體的三視圖.
(2)已知某個(gè)幾何體的三視圖如圖2,根據(jù)圖中標(biāo)出的數(shù)據(jù),可得這個(gè)幾何體的體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)對(duì)稱;
②函數(shù)f(x)=tanx是最小正周期為π的周期函數(shù);
③函數(shù)y=cos2x+sinx的最小值為-1;
④設(shè)θ為第二象限的角,則tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2
;
⑤若θ第三象限角,則點(diǎn)P(sin(cosθ),cos(cosθ))在第二象限.
其中正確的命題序號(hào)是
 
..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長(zhǎng)為2,有一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿正方形的邊運(yùn)動(dòng),路線是B→C→D→A,設(shè)點(diǎn)M經(jīng)過的路程為x,△ABM的面積為S,求函數(shù)S=f(x)的解析式及其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+1)lnx.
(1)指出函數(shù)f(x)極值點(diǎn)的個(gè)數(shù),并給出證明;
(2)若關(guān)于x的不等式mf(x)>2(x-1)對(duì)于所有x∈(1,+∞)都成立,求實(shí)數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足條件a1=1,an=an-1+(
1
3
n-1(n=2,3,…).
(1)求{an};
(2)求a1+a2+a3+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長(zhǎng)為2的正三角形,則它的平面直觀圖△A′B′C′的面積為(  )
A、
3
4
B、
3
2
C、
6
4
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=log 
1
2
2cos(-
x
2
+
π
3
)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案