精英家教網 > 高中數學 > 題目詳情
10.若函數y=f(x)的值域為[$\frac{1}{2}$,3],則函數F(x)=f(x-1)+$\frac{1}{f(x-1)}$的值域是( 。
A.[$\frac{1}{2}$,3]B.[2,$\frac{10}{3}$]C.[$\frac{5}{2}$,$\frac{10}{3}$]D.[3,$\frac{10}{3}$]

分析 由函數y=f(x)的值域為[$\frac{1}{2}$,3],可知f(x-1)∈[$\frac{1}{2}$,3],換元后利用“對勾”函數的單調性求得答案.

解答 解:∵y=f(x)的值域為[$\frac{1}{2}$,3],
∴t=f(x-1)∈[$\frac{1}{2}$,3],
g(t)=F(x)=f(x-1)+$\frac{1}{f(x-1)}$=$t+\frac{1}{t}$在[$\frac{1}{2}$,1]上為減函數,在[1,3]上為增函數,
又g($\frac{1}{2}$)=$\frac{1}{2}$+2=$\frac{5}{2}$,g(1)=2,g(3)=3+$\frac{1}{3}$=$\frac{10}{3}$.
∴函數F(x)=f(x-1)+$\frac{1}{f(x-1)}$的值域是[2,$\frac{10}{3}$].
故選:B.

點評 本題考查函數的值域的求法,訓練了利用函數單調性求函數的值域,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.函數y=sinx-1的最小值是2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.在直角坐標系中,O是原點,A($\sqrt{3}$,-1),將點A繞O順時針旋轉45°到B點,則點B的坐標為($\frac{\sqrt{6}-\sqrt{2}}{2}$,$\frac{\sqrt{2}+\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0)的上頂點為A,下頂點為B,左頂點為C,F為右焦點,過F作與AC平行的直線交橢圓于M、N兩點.
(1)若直線BF的斜率是直線AC的斜率的3倍,求橢圓的離心率.
(2)若$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{OE}$,點E在橢圓上,且橢圓的長軸長為4,求橢圓的方程;
(3)若$\overrightarrow{MF}$=2$\overrightarrow{FN}$,$\overrightarrow{CP}$=$\overrightarrow{PA}$;求證:直線FP的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.如圖,點E為△ABC中AB邊的中點,點F為AC的三等分點(靠近點A),BF交CE于點G,若$\overrightarrow{AG}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,則x+y=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.給出下列命題:
①將空間中所有的單位向量移到同一個起點,則它們的終點構成一個圓;
②若空間向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;
③若空間向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$滿足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,則$\overrightarrow{m}$=$\overrightarrow{p}$;
④空間中任意兩個單位向量必相等;
⑤零向量沒有方向;
其中假命題的個數是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F2,過F1作圓:x2+y2=$\frac{3}{4}$c2的切線,交雙曲線左右支分別于A,B兩點且|$\overrightarrow{BA}$|=|$\overrightarrow{B{F}_{2}}$|,則雙曲線的離心率等于( 。
A.$\sqrt{3}$+1B.$\frac{\sqrt{15}+\sqrt{3}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{13}+1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(Ⅰ)求證:平面BCE⊥平面CDE;
(Ⅱ)求平面BCE與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.$sinA=\frac{1}{2}$”是“A=30°”的必要不充分條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)

查看答案和解析>>

同步練習冊答案