分析 (1)連結(jié)A1C交AC1于F,取B1C中點E,連結(jié)DE,EF.則可利用中位線定理證明四邊形ADEF是平行四邊形,得出AF∥CD,從而證明AC1∥平面CDB1.
(2)求出AA1和AD的長,使用余弦定理求出A1D,由勾股定理的逆定理證出A1D⊥AA1,由面面垂直可得出AC⊥平面ABB1A1,進而得出AC⊥A1D,得出DA1⊥平面AA1C1C.
解答 證明:(1)連結(jié)A1C交AC1于F,取B1C中點E,連結(jié)DE,EF.
∵四邊形AA1C1C是矩形,∴F是A1C的中點,
∴EF∥A1B1,EF=$\frac{1}{2}$A1B1,
∵四邊形ABB1A1是平行四邊形,D是AB的中點,
∴AD∥A1B1,AD=$\frac{1}{2}$A1B1,
∴四邊形ADEF是平行四邊形,∴AF∥DE,即AC1∥DE.
又∵DE?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
(2)∵AB=4AA1=4,D是AB中點,∴AA1=1,AD=2,
∵∠BAA1=60°,∴A1D=$\sqrt{A{D}^{2}+A{{A}_{1}}^{2}-2AD•A{A}_{1}cos60°}$=$\sqrt{3}$.
∴AA12+A1D2=AD2,∴A1D⊥AA1,
∵側(cè)面AA1C1C⊥側(cè)面AA1B1B,側(cè)面AA1C1C∩側(cè)面AA1B1B=AA1,AC⊥AA1,AC?平面AA1C1C,
∴AC⊥平面AA1B1B,∵A1D?平面AA1B1B,
∴AC⊥A1D,又∵AA1?平面AA1C1C,AC?平面AA1C1C,AC∩AA1=A,
∴DA1⊥平面AA1C1C.
點評 本題考查了線面平行,線面垂直的判斷,面面垂直的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | $\sqrt{3}$(1+$\sqrt{2}$+$\sqrt{3}$) | C. | 3+3$\sqrt{2}$ | D. | 3+3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+3 | B. | -a+5 | C. | a-5 | D. | -a-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1” | |
B. | 線性回歸直線方程y=bx+a恒過樣本中心$(\overline x,\overline y)$,且至少經(jīng)過一個樣本點 | |
C. | 命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
D. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{10}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\sqrt{2}$,+∞) | B. | [2,+∞) | C. | (0,2] | D. | [-$\sqrt{2}$,-1]∪[$\sqrt{2}$,$\sqrt{3}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com