20.已知隨機(jī)變量ξ服從正態(tài)分布N(1,1),若P(ξ<3)=0.977,則P(-1<ξ<3)=0.954.

分析 根據(jù)隨機(jī)變量ξ服從正態(tài)分布,知正態(tài)曲線的對(duì)稱軸是x=1,且P(ξ>3)=0.023,依據(jù)正態(tài)分布對(duì)稱性,即可求得答案.

解答 解:隨機(jī)變量ξ服從正態(tài)分布N(1,1),
∴曲線關(guān)于x=1對(duì)稱,
∵P(ξ<3)=0.977,∴P(ξ>3)=0.023,
∴P(-1≤ξ≤3)=1-2P(ξ>3)=1-0.046=0.954.
故答案為:0.954.

點(diǎn)評(píng) 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查概率的性質(zhì),是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在區(qū)間[0,2π]上隨機(jī)取一個(gè)數(shù)x,則事件“cosx≥$\frac{1}{2}$”發(fā)生的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.有兩件事和四個(gè)圖象,兩件事為:①我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是返回家找到作業(yè)本再上學(xué);②我出發(fā)后,心情輕松,緩緩前行,后來為了趕時(shí)間開始加速,四個(gè)圖象如下:

與事件①,②對(duì)應(yīng)的圖象分別為( 。
A.a,bB.a,cC.d,bD.d,c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.質(zhì)點(diǎn)沿直線運(yùn)動(dòng)的路程和時(shí)間的關(guān)系是s=$\root{5}{t}$.則質(zhì)點(diǎn)在t=4時(shí)的速度是( 。
A.$\frac{1}{2\root{5}{{2}^{3}}}$B.$\frac{1}{10\root{5}{{2}^{3}}}$C.$\frac{1}{\frac{2}{5}\root{5}{{2}^{3}}}$D.$\frac{1}{\frac{1}{10}\root{5}{{2}^{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在復(fù)平面內(nèi),點(diǎn)P、Q對(duì)應(yīng)的復(fù)數(shù)分別為z1、z2.且z2=2z1+3-4i,|z1|=1.求點(diǎn)Q的軌跡以(3,-4)為圓心,2為半徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.關(guān)于復(fù)數(shù)x、y的方程組$\left\{\begin{array}{l}{x+2yi=1-i}\\{xi-3y=2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-3-i}\\{y=-1+i}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y∈R,向量$\overrightarrow{a}$,$\overrightarrow$不共線,若(x+y-2)$\overrightarrow{a}$+(x-y+3)$\overrightarrow$=0,則x=$-\frac{1}{2}$,y=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.sin22°30′•cos22°30′的值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:$\frac{x^2}{3}+{y^2}$=1的左焦點(diǎn),點(diǎn)P、Q在橢圓上,點(diǎn)P、Q、R滿足$\overrightarrow{OF}$•$\overrightarrow{PQ}$=0,$\overrightarrow{QR}$+2$\overrightarrow{PQ}$=$\overrightarrow{0}$,則$\sqrt{3}|{PF}|+|{OR}$|的最大值為( 。
A.6B.$\sqrt{3}$(1+$\sqrt{2}$+$\sqrt{3}$)C.3+3$\sqrt{2}$D.3+3$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案