1.已知雙曲線$\frac{x^2}{m}-\frac{y^2}{{{m^2}+2}}=1$的右焦點(diǎn)到其漸進(jìn)線的距離為$\sqrt{3}$,則此雙曲線的離心率為2.

分析 求出雙曲線的a,b,c,可得右焦點(diǎn)坐標(biāo)和雙曲線的漸近線方程,運(yùn)用點(diǎn)到直線的距離公式,計(jì)算可得m,運(yùn)用雙曲線的離心率公式即可得到所求值.

解答 解:雙曲線$\frac{x^2}{m}-\frac{y^2}{{{m^2}+2}}=1$(m>0)的a=$\sqrt{m}$,b=$\sqrt{2+{m}^{2}}$,
c=$\sqrt{m+2+{m}^{2}}$,
右焦點(diǎn)為($\sqrt{m+2+{m}^{2}}$,0),
漸近線方程為$\sqrt{2+{m}^{2}}$x±$\sqrt{m}$y=0,
由題意可得$\sqrt{3}$=$\frac{\sqrt{2+{m}^{2}}•\sqrt{2+m+{m}^{2}}}{\sqrt{2+m+{m}^{2}}}$=$\sqrt{2+{m}^{2}}$,
解得m=1,
則a=1,c=2,
e=$\frac{c}{a}$=2.
故答案為:2.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程和焦點(diǎn)坐標(biāo),考查點(diǎn)到直線的距離公式和運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)y=ex+mx(x∈R)有極值,則實(shí)數(shù)m的取值范圍是( 。
A.(0,+∞)B.(-∞,0)C.(1,0)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.集合S={x||x-2|>3},T={x|a<x<a+8},S∪T=R,則a的取值范圍是(-3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法錯(cuò)誤的是(  )
①命題p:?x>2,2x-3>0的否定是?x0>2,2${\;}^{{x}_{0}}$-3≤0;
②已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若(z+2$\overline{z}$)(1-2i)=3-4i(i為虛數(shù)單位),則在復(fù)平面內(nèi),復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于第四象限;
③已知x.y∈R,且2x+3y>2-y+3-x,則x-y<0;
④若$\overrightarrow{a}$=(λ,-2),$\overrightarrow$=(-3,5),且$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角,則λ的取值范圍是λ∈(-$\frac{10}{3}$,+∞);
⑤設(shè)函數(shù)f(x)=$\sqrt{3}$sin$\frac{πx}{m}$,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2,則m的取值范圍是(-∞,-2)∪(2,∞).
A.①②B.②③C.③④D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列雙曲線中,焦點(diǎn)在y軸上且漸近線方程為y=±$\frac{1}{2}$x的是( 。
A.${x^2}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{y^2}{4}-{x^2}=1$D.${y^2}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若向量$\overrightarrow a=(\sqrt{3}sinωx,sinωx),\overrightarrow b=(cosωx,sinωx)$,其中ω>0,記函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$,若函數(shù)f(x)的圖象上相鄰兩個(gè)極值點(diǎn)之間的距離是$\frac{{\sqrt{16+{π^2}}}}{2}$.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)△ABC三內(nèi)角A、B、C的對(duì)應(yīng)邊分別為a、b、c,若a+b=3,$c=\sqrt{3}$,f(C)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)是奇函數(shù)的是( 。
A.y=xB.y=2x2-3C.y=x+1D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓的極坐標(biāo)方程為ρ=2cosθ-2sinθ,則圓的半徑為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=6sinθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P(1,3),若直線l與曲線C交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案