13.從某班56人中隨機(jī)抽取1人,則班長(zhǎng)被抽到的概率是$\frac{1}{56}$.

分析 利用隨機(jī)抽樣的性質(zhì)求解.

解答 解:從某班56人中隨機(jī)抽取1人,
每人被抽到的概率都是$\frac{1}{56}$,
∴班長(zhǎng)被抽到的概率p=$\frac{1}{56}$.
故答案為:$\frac{1}{56}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意隨機(jī)抽樣性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某校從2名男生和3名女生中隨機(jī)選出3名學(xué)生做義工,則選出的學(xué)生中男女生都有的概率為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.定義在(0,+∞)上的函數(shù)f(x),如果對(duì)任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,則稱f(x)為k階伸縮函數(shù).
(Ⅰ)若函數(shù)f(x)為二階伸縮函數(shù),且當(dāng)x∈(1,2]時(shí),$f(x)=1+{log_{\frac{1}{3}}}x$,求$f(2\sqrt{3})$的值;
(Ⅱ)若函數(shù)f(x)為三階伸縮函數(shù),且當(dāng)x∈(1,3]時(shí),$f(x)=\sqrt{3x-{x^2}}$,求證:函數(shù)$y=f(x)-\sqrt{2}x$在(1,+∞)上無(wú)零點(diǎn);
(Ⅲ)若函數(shù)f(x)為k階伸縮函數(shù),且當(dāng)x∈(1,k]時(shí),f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N*)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.氣象臺(tái)預(yù)報(bào)“本市明天降雨概率是70%”,下列說(shuō)法正確的是( 。
A.本市明天將有70%的地區(qū)降雨B.本市明天將有70%的時(shí)間降雨
C.明天出行帶雨具的可能性很大D.明天出行不帶雨具肯定要淋雨

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知tan(π+α)=-$\frac{1}{3}$,求$\frac{sinα+2cosα}{5cosα-sinα}$的值;
(Ⅱ)已知sinα-cosα=$\frac{1}{5}$,且0<α<π,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)$f(x)=x-\frac{2}{x-1}$(x∈[2,6]),則f(x)的值域是$[{0,\frac{28}{5}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,則u=$\frac{2x+3y}{x+y}$的取值范圍為$\frac{12}{5}$≤u≤$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知點(diǎn)$(a,\frac{1}{2})$在冪函數(shù)f(x)=(a-1)xb的圖象上,則函數(shù)f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.定義域內(nèi)的減函數(shù)D.定義域內(nèi)的增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,在直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=2$\sqrt{3}$,△ABC是以A為直角頂點(diǎn)的等腰直角三角形,點(diǎn)P是線段BF上的一點(diǎn),PF=3.
(1)證明:FB⊥平面PAC;
(2)求異面直線PC與AB所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案