18.已知函數(shù)$f(x)=x-\frac{2}{x-1}$(x∈[2,6]),則f(x)的值域是$[{0,\frac{28}{5}}]$.

分析 由y=x,y=$\frac{2}{x-1}$在[2,6]上的單調(diào)性,可得函數(shù)$f(x)=x-\frac{2}{x-1}$(x∈[2,6])為增函數(shù),從而求出函數(shù)的最值得答案.

解答 解:∵函數(shù)y=x在[2,6]上為增函數(shù),y=$\frac{2}{x-1}$在[2,6]上為減函數(shù),
∴函數(shù)$f(x)=x-\frac{2}{x-1}$(x∈[2,6])為增函數(shù),
則$f(x)_{min}=f(2)=0,f(x)_{max}=f(6)=\frac{28}{5}$.
故答案為:$[{0,\frac{28}{5}}]$.

點(diǎn)評(píng) 本題考查函數(shù)值域的求法,訓(xùn)練了利用函數(shù)單調(diào)性求函數(shù)的值域,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a>0,b>0,且2a+3b=6,則$\frac{3}{a}$+$\frac{2}$的最小值為( 。
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若六進(jìn)制數(shù)10k5(6)(k為正整數(shù))化為十進(jìn)制數(shù)為239,則k=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x,x<0}\\{1,x≥0}\end{array}\right.$,則f[f(-3)]的值為( 。
A.-3B.1C.3D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.從某班56人中隨機(jī)抽取1人,則班長(zhǎng)被抽到的概率是$\frac{1}{56}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)中,在定義域上為增函數(shù)的是( 。
A.y=|x|B.$y=x-\frac{1}{x}$C.y=ex-1D.y=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.已知函數(shù)g(x)=x2與h(x)=2x-b是定義在[0,1]上的函數(shù).
(1)試問(wèn)函數(shù)g(x)是否為G函數(shù)?并說(shuō)明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在平面內(nèi),到兩坐標(biāo)軸距離之差等于4的點(diǎn)的軌跡方程( 。
A.x-y=4B.x-y=±4C.|x|-|y|=4D.|x|-|y|=±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知等差數(shù)列{an}的前3項(xiàng)和為-6,前8項(xiàng)的和為24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(an+6)qn(q≠0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案