5.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,則u=$\frac{2x+3y}{x+y}$的取值范圍為$\frac{12}{5}$≤u≤$\frac{8}{3}$.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)分式的性質(zhì)利用分子常數(shù)化,利用換元法結(jié)合直線斜率的性質(zhì)進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則x>0,
u=$\frac{2x+3y}{x+y}$=$\frac{2+3•\frac{y}{x}}{1+\frac{y}{x}}$=$\frac{3(1+\frac{y}{x})-1}{1+\frac{y}{x}}$=3-$\frac{1}{1+\frac{y}{x}}$,
設(shè)k=$\frac{y}{x}$,則k的幾何意義是區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的斜率,
由圖象知,AO的斜率最小,BO的斜率最大,
由$\left\{\begin{array}{l}{3x-y-2=0}\\{2x+y-8=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即B(2,4),
由$\left\{\begin{array}{l}{x-2y+1=0}\\{2x+y-8=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2),
則AO的斜率k=$\frac{2}{3}$,BO的斜率k=2,
即$\frac{2}{3}$≤k≤2,
則u=3-$\frac{1}{1+\frac{y}{x}}$=3-$\frac{1}{1+k}$在$\frac{2}{3}$≤k≤2上為增函數(shù),
則當(dāng)k=$\frac{2}{3}$時(shí),函數(shù)取得最小值,u=$\frac{12}{5}$,
當(dāng)k=2時(shí),函數(shù)取得最大值,u=$\frac{8}{3}$,
即$\frac{12}{5}$≤u≤$\frac{8}{3}$,
故答案為:$\frac{12}{5}$≤u≤$\frac{8}{3}$

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用分式的性質(zhì)以及換元法是解決本題的關(guān)鍵.注意數(shù)形結(jié)合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知直線l:y=kx+2k+1與拋物線C:y2=4x,若l與C有且僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的取值集合為( 。
A.$\left\{{-1,\frac{1}{2}}\right\}$B.{-1,0}C.$\left\{{-1,0,\frac{1}{2}}\right\}$D.$\left\{{0,\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|0<x<3},B=$\left\{{x|y=\sqrt{{x^2}-1}}\right\}$,則集合A∩(∁RB)為(  )
A.[0,1)B.(0,1)C.[1,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.從某班56人中隨機(jī)抽取1人,則班長(zhǎng)被抽到的概率是$\frac{1}{56}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,直四棱柱ABCD-A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分別是所在棱的中點(diǎn).
(1)證明:平面MNE⊥平面D1DE;
(2)證明:MN∥平面D1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.已知函數(shù)g(x)=x2與h(x)=2x-b是定義在[0,1]上的函數(shù).
(1)試問(wèn)函數(shù)g(x)是否為G函數(shù)?并說(shuō)明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),且$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則( 。
A.x=-1,y=-$\frac{1}{2}$B.x=1,y=$\frac{1}{2}$C.x=-1,y=$\frac{1}{2}$D.x=1,y=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥0}\\{f(-x),x<0}\end{array}\right.$,則f(log2$\frac{1}{6}$)=( 。
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.一個(gè)袋中裝有7個(gè)大小相同的球,其中紅球有4個(gè),編號(hào)分別為1,2,3,4;藍(lán)球3個(gè),編號(hào)為2,4,6,現(xiàn)從袋中任取3個(gè)球(假設(shè)取到任一球的可能性相同).
(I)求取出的3個(gè)球中,含有編號(hào)為2的球的概率;
(Ⅱ)記ξ為取到的球中紅球的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案