4.流程圖(如圖)的打印結(jié)果是3 7 15 31 63.

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量A的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:第一次執(zhí)行循環(huán)體,A=3,打印3后,滿足繼續(xù)循環(huán)的條件;
第二次執(zhí)行循環(huán)體,A=7,打印7后,滿足繼續(xù)循環(huán)的條件;
第三次執(zhí)行循環(huán)體,A=15,打印15后,滿足繼續(xù)循環(huán)的條件;
第四次執(zhí)行循環(huán)體,A=31,打印31后,滿足繼續(xù)循環(huán)的條件;
第五次執(zhí)行循環(huán)體,A=63,打印63后,不滿足繼續(xù)循環(huán)的條件;
故打印的結(jié)果是:3  7  15  31  63;
故答案為:3  7  15  31  63

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知⊙O1與⊙O1的半徑分別為5cm和3cm,圓心距O1O1=7cm,則兩圓的位置關(guān)系相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.對(duì)于數(shù)列{an},稱P(ak)=$\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)為數(shù)列{an}的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的k≥2,k∈N,都有P(ak+1)<P(ak),則稱數(shù)列{an}為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,x,2為“趨穩(wěn)數(shù)列”,求x的取值范圍;
(2)已知等差數(shù)列{an}的公差為d,且a1>0,d>0,其前n項(xiàng)和記為Sn,試計(jì)算:Cn2P(S2)+Cn3P(S3)+…+CnnP(Sn)(n≥2,n∈N);
(3)若各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的公比q∈(0,1),求證:{bn}是“趨穩(wěn)數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如表示采集的商品零售額(萬(wàn)元)與商品流通費(fèi)率的一組數(shù)據(jù):
 商品零售額 9.511.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5 27.5 
 商品流通費(fèi)率 6.0 4.6 4.0 3.22.8 2.5 2.4 2.3 2.2 2.1 
(1)將商品零售額作為橫坐標(biāo),商品流通費(fèi)率作為縱坐標(biāo),在平面直角坐標(biāo)系內(nèi)作出散點(diǎn)圖;
(2)商品零售額與商品流通費(fèi)率具有線性相關(guān)關(guān)系嗎?如果商品零售額是20萬(wàn)元,那么能否預(yù)測(cè)此時(shí)流通費(fèi)率是多少呢?(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一束光線從點(diǎn)P(-1,1)出發(fā),經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上一點(diǎn)的最長(zhǎng)路程是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{6}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=$\sqrt{3}$,∠AOB=60°,$\overrightarrow{OB}$⊥$\overrightarrow{OC}$.若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則x,y的值分別是( 。
A.-2,-1B.-2,1C.2,-1D.2,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$+lg(x2-x-2)的定義域?yàn)閧x|-2≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求函數(shù)y=-sin2x-cosx+2,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知cos2A+3cos(B+C)=1.
(1)求角A的大小;
(2)若a=2$\sqrt{3}$,b+c=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案