12.已知{bn}首項(xiàng)為1,公差為$\frac{4}{3}$的AP,且a1+2a2+3a3+…+nan=$\frac{n(n+1)}{2}$•bn,求an

分析 通過(guò){bn}首項(xiàng)為1,公差為$\frac{4}{3}$的AP,求出bn,利用已知條件求解an

解答 解:{bn}首項(xiàng)為1,公差為$\frac{4}{3}$的AP,∴bn=1+$\frac{4}{3}$(n-1)=$\frac{4}{3}n-\frac{1}{3}$.
a1+2a2+3a3+…+nan=$\frac{n(n+1)}{2}$•bn
可知:a1+2a2+3a3+…+(n-1)an-1=$\frac{n(n-1)}{2}$•bn-1,
∴nan=[$\frac{n(n+1)}{2}$]•bn-[$\frac{n(n-1)}{2}$]•bn-1=$\frac{n(n+1)}{2}$•$(\frac{4}{3}n-\frac{1}{3})$-$\frac{n(n-1)}{2}$•$(\frac{4}{3}n-\frac{5}{3})$,
解得an=2n-1.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法和前n項(xiàng)和的計(jì)算,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)O是△ABC內(nèi)部一點(diǎn),且$\overrightarrow{OA}$$+\overrightarrow{OC}$$+5\overrightarrow{OB}$=$\overrightarrow{0}$,則$\frac{{S}_{△AOB}}{{S}_{△AOC}}$=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,以橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上的一點(diǎn)A為圓心的圓與x軸相切于橢圓的一個(gè)焦點(diǎn),與y軸相交于B,C兩點(diǎn),若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是( 。
A.($\frac{{\sqrt{6}-\sqrt{2}}}{2}$,$\frac{{\sqrt{5}-1}}{2}$)B.($\frac{{\sqrt{6}-\sqrt{2}}}{2}$,1)C.($\frac{{\sqrt{5}-1}}{2}$,1)D.(0,$\frac{{\sqrt{5}-1}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知sinα=$\frac{1}{5}$,且tanα<0,求cosα,tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2-mlnx,h(x)=x2-ax+1(a>0)
(1)設(shè)A是函數(shù)f(x)=x2-mlnx上的定點(diǎn),且f(x)在A點(diǎn)的切線與y軸垂直,求m的值;
(2)討論f(x)的單調(diào)性;
(3)若存在實(shí)數(shù)m使函數(shù)f(x),h(x)在公共定義域上具有相同的單調(diào)性,求證:m≥-$\frac{1}{3}{a^3}+6a-\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在海岸線EF一側(cè)有一休閑游樂(lè)場(chǎng),游樂(lè)場(chǎng)的前一部分邊界為曲線段FGBC,該曲線段是函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,
ϕ∈(0,π)),x∈[-4,0]的圖象,圖象的最高點(diǎn)為B(-1,2)邊界的中間部分為長(zhǎng)1千米的直線段CD,且CD∥EF.游樂(lè)場(chǎng)的后一部分邊界是以O(shè)為圓心的一段圓弧$\widehat{DE}$.
(1)求曲線段FGBC的函數(shù)表達(dá)式;
(2)如圖,在扇形ODE區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū)OMPQ,平行四邊形的一邊在海岸線EF上,一邊在半徑 OD上,另外一個(gè)頂點(diǎn)P在圓弧$\widehat{DE}$上,且∠POE=θ,求平行四邊形休閑區(qū)OMPQ面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面的圓周上,BF⊥AE,F(xiàn)是垂足.
(1)求證:BF⊥AC;
(2)如果圓柱與三棱錐A-BCE的體積比等于3π,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在四棱錐P-ABCD中,PA⊥底面ABCD,PA=1,底面ABCD是正方形,E是PD的中點(diǎn),PD與底面ABCD所成的角為$\frac{π}{6}$,求異面直線AE與PC 所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知雙曲線C中心在原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)P(-2,0)與其漸近線的距離為$\frac{\sqrt{10}}{5}$,過(guò)點(diǎn)P作斜率為$\frac{1}{6}$的直線交雙曲線于A、B兩點(diǎn),點(diǎn)A、P、B在x軸上的射影分別是A1、P1、B1,且|P1O|是|P1A1|與|P1B1|的等比中項(xiàng),求雙曲線的離心率.

查看答案和解析>>

同步練習(xí)冊(cè)答案