8.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,-π<φ<0)的最小正周期為π,且它的圖象過(guò)點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$).
(Ⅰ)求ω,φ的值;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

分析 (Ⅰ)由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值.
(Ⅱ)根據(jù)函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性,求出函數(shù)y=f(x)的單調(diào)增區(qū)間.

解答 解:(Ⅰ)∵函數(shù)f(x)=cos(ωx+φ)(ω>0,-π<φ<0)的最小正周期為π,
∴$\frac{2π}{ω}$=π,∴ω=2.
∵它的圖象過(guò)點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$),∴cos($\frac{π}{3}$+φ)=$\frac{1}{2}$,∴$\frac{π}{3}$+φ=-$\frac{π}{3}$,∴φ=-$\frac{2π}{3}$.
(Ⅱ)由以上可得,f(x)=cos(2x-$\frac{2π}{3}$),
令2kπ-π≤2x-$\frac{2π}{3}$≤2kπ,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
∴函數(shù)y=f(x)的單調(diào)增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:4x-3y+20=0,且雙曲線的一個(gè)焦點(diǎn)在直線l上,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{5{x}^{2}}{9}$-$\frac{5{y}^{2}}{16}$=1D.$\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,BC邊上的高所在直線的方程為x+2y+3=0,∠A的平分線所在直線的方程為y=0,若點(diǎn)B的坐標(biāo)為(-1,-2),分別求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知直線l的一個(gè)方向向量的坐標(biāo)是$({-1,\sqrt{3}})$,則直線l的傾斜角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=|log0.5x|,若正實(shí)數(shù)m,n(m<n)滿足f(m)=f(n),且f(x)在區(qū)間[m2,n]上的最大值為4,則n-m=(  )
A.$\frac{3}{2}$B.$\frac{15}{4}$C.$\frac{63}{4}$D.$\frac{255}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)(0,-2)的直線l與圓x2+y2=1有公共點(diǎn),則直線l的傾斜角的取值范圍是( 。
A.$[{\frac{π}{3},\frac{2π}{3}}]$B.$[{\frac{π}{6},\frac{5π}{6}}]$C.$({0,\frac{π}{3}}]∪[{\frac{2π}{3},π})$D.$[{\frac{π}{3},\frac{π}{2}})∪({\frac{π}{2},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=sinxcosx,則f(x)的最小正周期為π,f(x)在$[-\frac{π}{8},\;\frac{π}{4}]$上的最小值為-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在等差數(shù)列{an}中,a1+a5=10,則a2+a3+a4=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=2sin($\frac{x}{4}$+2),如果存在實(shí)數(shù)x1,x2使得對(duì)任意的實(shí)數(shù),都有f(x1)≤f(x2),則|x1-x2|的最小值是4π.

查看答案和解析>>

同步練習(xí)冊(cè)答案