A. | 4+$\frac{\sqrt{3}}{2}$ | B. | 7 | C. | 6 | D. | 4+2$\sqrt{3}$ |
分析 先求出拋物線的標(biāo)準(zhǔn)方程,得焦點(diǎn)F的坐標(biāo),再設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|進(jìn)而把問題轉(zhuǎn)化為求|PA|+|PD|取得最小,進(jìn)而可推斷出當(dāng)D,P,A三點(diǎn)共線時|PA|+|PD|最小,答案可得.
解答 解:由題意,|MF|的最小值為2,
∴$\frac{p}{2}$=2,
∴p=4,
∴拋物線E:y2=8x,
拋物線y2=8x的焦點(diǎn)F的坐標(biāo)是(2,0 );
設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小,
當(dāng)D,P,A三點(diǎn)共線時|PA|+|PD|最小,為4-(-2)=6,
故選:C.
點(diǎn)評 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,判斷當(dāng)D,P,A三點(diǎn)共線時|PA|+|PD|最小,是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 內(nèi)切 | B. | 外切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n+10 | B. | n+8 | C. | 2n+10 | D. | 2n+8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好打籃球與性別無關(guān)” | |
B. | 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好打籃球與性別有關(guān)” | |
C. | 有99%以上的把握認(rèn)為“愛好打籃球與性別無關(guān)” | |
D. | 有99%以上的把握認(rèn)為“愛好打籃球與性別有關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com