5.分析下列四個(gè)命題:
①若實(shí)數(shù)a,b,c滿足a+b+c=3,則a,b,c中至少有一個(gè)不小于1;
②若z為復(fù)數(shù),且|z|=1,則|z-i|的最大值等于2;
③任意x∈(0,+∞)都有x>sinx;
④若f(x)是奇函數(shù),則∫${\;}_{-a}^{a}$f(x)dx=2∫${\;}_{0}^{a}$f(x)dx.
其中,正確命題的序號(hào)是①②③.(把你認(rèn)為正確命題的序號(hào)都填上)

分析 ①可運(yùn)用反證法,即可判斷;
②運(yùn)用|z-i|≤|z|+|-i|=2,即可得到最大值;
③運(yùn)用導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,再由單調(diào)性可證;
④根據(jù)定積分的幾何意義進(jìn)行判斷.

解答 解:①則用反證法,假設(shè)a,b,c都不小于1,a≥1,b≥1,c≥1,則a+b+c≥3,與a+b+c<3,矛盾,故可得a,b,c中至少有一個(gè)不小于1,故①正確;
②若z為復(fù)數(shù),且|z|=1,則由|z-i|≤|z|+|-i|=2,可得|z-i|的最大值等于2,故②正確;
③任意x∈(0,+∞),根據(jù)(x-sinx)′=1-cosx≥0,可得y=x-sinx在R上為增函數(shù),
當(dāng)x=0時(shí),y=x-sinx=0,可得任意x∈(0,+∞),都有x-sinx>0,即x>sinx,故③正確.
④f(x)是奇函數(shù),∴其圖象關(guān)于原點(diǎn)對(duì)稱,
∵定積分的幾何意義是函數(shù)圖象與x軸所圍成的封閉圖形的面積的代數(shù)和,
∴函數(shù)f(x)在區(qū)間[-a,a]上的圖象必定關(guān)于原點(diǎn)O對(duì)稱,
∴函數(shù)圖象與x軸所圍成的封閉圖形的面積的代數(shù)和為0,
∴∫${\;}_{-a}^{a}$f(x)dx=0,故④錯(cuò)誤.
故答案為:①②③.

點(diǎn)評(píng) 本題以命題的真假判斷為載體,考查函數(shù)的單調(diào)性及應(yīng)用,復(fù)數(shù)的幾何意義,及定積分的幾何意義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知第一象限的點(diǎn)M在橢圓4x2+9y2=324上,且M到橢圓右準(zhǔn)線的距離為4$\sqrt{5}$.
(1)求點(diǎn)M的坐標(biāo);
(2)如果點(diǎn)N在橢圓上,且線段MN經(jīng)過橢圓的右焦點(diǎn),求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}是以a1為首項(xiàng),q為公比的等比數(shù)列,對(duì)于給定的a1,滿足q2-2a1q+2a1-1=0的數(shù)列{an}是唯一的,則首項(xiàng)a1=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,A=$\frac{π}{3}$,BC=3,求AC+AB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1并且垂直于x軸的直線為l,若過原點(diǎn)O和F2并和直線l相切的圓的半徑等于點(diǎn)F2到雙曲線C的兩條漸近線的距離之和,則雙曲線C的離心率為$\frac{4\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.tan170°=a-1,則tan20°等于$\frac{2-2a}{2a-{a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,過點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A、B兩點(diǎn),當(dāng)直線l平行于x軸時(shí),直線l被橢圓E截得的線段長(zhǎng)為4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),是否存在常數(shù)λ,使得$\overrightarrow{OA}•\overrightarrow{OB}$+λ$\overrightarrow{PA}•\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若存在實(shí)數(shù)k和b,使得函數(shù)f(x)和g(x)對(duì)定義域內(nèi)的任意x均滿足:[f(x)-(kx+b)][g(x)-(kx+b)]≤0,且存在x1使得f(x1)-(kx1+b)=0,存在x2使得g(x2)-(kx2+b)=0,則稱直線l:y=kx+b為函數(shù)f(x)和g(x)的“分界線”.在下列說法中正確的是( 。
A.任意兩個(gè)一次函數(shù)最多存在一條“分界線”
B.“分界線”存在的兩個(gè)函數(shù)的圖象最多只有兩個(gè)交點(diǎn)
C.f(x)=x2-2x與g(x)=-x2+4的“分界線”是y=-x+2
D.f(x)=x2與g(x)=-(x-1)2的“分界線”是y=0或$y=x-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.當(dāng)0<a<1時(shí),在同一坐標(biāo)系中,函數(shù)y=a-x與$y={log_{\frac{1}{a}}}x$的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案