A. | x2+(y+1)2=1 | B. | x2+(y+$\sqrt{3}$)2=3 | C. | x2+(y+$\frac{\sqrt{3}}{2}$)2=$\frac{3}{4}$ | D. | x2+(y+2)2=4 |
分析 設(shè)出圓C的方程,求出雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的漸近線方程,利用圓被雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的漸近線截得的弦長為$\sqrt{3}$,建立方程,即可求出圓C的方程.
解答 解:設(shè)圓C的方程為x2+(y-a)2=a2(a<0),圓心坐標(biāo)為(0,a),
∵雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的漸近線方程為y=±$\sqrt{3}$x,圓被雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的漸近線截得的弦長為$\sqrt{3}$,
∴$(\frac{\sqrt{3}}{2})^{2}+(\frac{a}{2})^{2}={a}^{2}$,
∴a=-1,
∴圓C的方程為x2+(y+1)2=1.
故選:A.
點(diǎn)評 本題考查雙曲線的幾何性質(zhì),考查直線與圓的位置關(guān)系,正確運(yùn)用勾股定理是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:16 | B. | 39:129 | C. | 13:129 | D. | 3:27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com