分析 由圖形可知AC⊥平面BB1D1D,且A到平面BB1D1D的距離與C到平面BB1D1D的距離相等,故EA=EC,所以EC就是EP+EP的最小值;
解答 解:連接AC交BD于N,連接EN,EC,
則AC⊥BD,
∵BB1⊥平面ABCD,
∴BB1⊥AC,
∴AC⊥平面BB1D1D,
∴AC⊥EN,
∴△AEN≌△CEN,
∴EA=EC,
連接EC,
∴線段EC的長(zhǎng)就是EP+EA的最小值.
在Rt△EAC中,AC=$\sqrt{2}$a,EA=$\frac{1}{2}$a,
∴EC=$\sqrt{A{C}^{2}+A{E}^{2}}$=$\frac{3}{2}$a.
故答案為:$\frac{3}{2}$a.
點(diǎn)評(píng) 本題考查了空間幾何中的最值問(wèn)題,找到EP與EP的相等關(guān)系是本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,+∞) | B. | [0,+∞) | C. | [-1,0] | D. | [-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,1,2} | B. | {0,1,2} | C. | (-1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $ω=\frac{π}{6},A=4$ | B. | $ω=\frac{2π}{15},A=3$ | C. | $ω=\frac{π}{6},A=5$ | D. | $ω=\frac{2π}{15},A=4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com