分析 設(shè)∠ABC=α,AB=BD=a,由余弦定理,得CD2=2+a2+2$\sqrt{2}$sinα,cosα=$\frac{{a}^{2}+1}{2\sqrt{2}a}$,由此能求出當(dāng)∠C變化時(shí),線段CD長(zhǎng)的最大值.
解答 解:設(shè)∠ABC=α,AB=BD=a,
在△BCD中,由余弦定理,
得CD2=BD2+BC2-2BD•BC•cos(90°+α)=2+a2+2$\sqrt{2}$sinα,
在△ABC中,由余弦定理,得cosα=$\frac{{a}^{2}+1}{2\sqrt{2}a}$,
∴sinα=$\frac{\sqrt{-{a}^{2}+6{a}^{2}-1}}{2\sqrt{2}a}$,∴CD2=$2+{a}^{2}+\sqrt{-{a}^{4}+6{a}^{2}-1}$,
令t=2+a2,則CD2=t+$\sqrt{-{t}^{2}+10t-17}$=t+$\sqrt{-(t-5)^{2}+8}$≤$\sqrt{2}•\sqrt{(t-5)^{2}+[-t(t-5)^{2}+8]}$+5=9,
當(dāng)(t-5)2=4時(shí)等號(hào)成立.
∴當(dāng)∠C變化時(shí),線段CD長(zhǎng)的最大值為3.
故答案為:3.
點(diǎn)評(píng) 本題考查線段長(zhǎng)的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e2015f(2015)>e2016f(2016) | B. | e2015f(2015)<e2016f(2016) | ||
C. | e2015f(2016)>e2016f(2015) | D. | e2015f(2016)<e2016f(2015) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com