1.若關于x的不等式x2+3mx-4<0的解集為(-4,1),則m的值為1.

分析 由已知得-4和1是方程x2+3mx-4=0的兩個根,由此能求出m.

解答 解:∵關于x的不等式x2+3mx-4<0的解集為(-4,1),
∴-4和1是方程x2+3mx-4=0的兩個根,
∴-4+1=-3m,
解得m=1.
故答案為:1.

點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意一元二次不等式的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若命題“p且q”為假,且“?p”為假,則( 。
A.“p或q”為假B.q假C.q真D.p假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.兩條平行直線3x-4y+12=0與3x-4y-13=0間的距離為(  )
A.$\frac{1}{5}$B.$\frac{5}{2}$C.$\frac{23}{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2sin(ωx+φ)$({ω>0,-\frac{π}{2}<φ<0})$的圖象如圖所示.
(Ⅰ) 求函數(shù)的解析式;
(Ⅱ) 當x∈[-5,-2]時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知數(shù)列{an}滿足an+1=an+1(n∈N*),且a1=1,則$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_{99}}{a_{100}}}}$=$\frac{99}{100}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.奇函數(shù)f(x)對任意x∈R都有f(x+2)=f(-x)成立,且f(1)=1,則f(2014)+f(2015)+f(2016)的值為( 。
A.1B.-1C.6D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.定義{x,y}max=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若a=tanθ,b=sinθ,c=cosθ,θ∈{θ|-$\frac{π}{4}$<θ<$\frac{3}{4}$π,θ≠0,$\frac{π}{4}$,$\frac{π}{2}$}且{a,b}max=a,{b,c}max=b,則θ的取值范圍是( 。
A.(-$\frac{π}{4}$,0)B.(0,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{2}$,$\frac{3}{4}$π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=cos2x+a|sinx|+$\frac{1}{4}$a-$\frac{3}{2}$的最大值為1.求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,三個內角A,B,C所對的邊為a,b,c,且a=4.
(1)若sin2A-sinBsinC=0,sinA>cosA,求sinA的取值范圍;
(2)若a=2bcosC,(2b-c)cosA-acosC=0,求三角形的面積.

查看答案和解析>>

同步練習冊答案