A. | [4,10] | B. | [6,9] | C. | [6,10] | D. | [9,10] |
分析 設(shè)z=$\overrightarrow{OA}•\overrightarrow{OP}$,則z=2x+3y,作出不等式組對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識進行求解即可.
解答 解:設(shè)z=$\overrightarrow{OA}•\overrightarrow{OP}$,則z=2x+3y,
作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+3y得y=-$\frac{2}{3}$x+$\frac{1}{3}$z,
平移直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z,由圖象可知當直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z經(jīng)過點C(3,0)時,
直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z的截距最小,此時z最小,此時zmin=2×3=6,
直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z經(jīng)過點B時,
直線y=-$\frac{2}{3}$x+$\frac{1}{3}$z的截距最小,此時z最小,
由$\left\{\begin{array}{l}{2x+y=6}\\{x+2y=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即B(2,2),此時zmax=2×2+3×2=10,
故6≤z≤10
故選:C.
點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)向量的數(shù)量積,以及數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+$\frac{1}{2}$ | B. | $\frac{1}{5}$ | C. | 1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$ | D. | 非以上答案 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
接受挑戰(zhàn) | 不接受挑戰(zhàn) | 合計 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合計 | 75 | 25 | 100 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(0)+f(3)<2f(2) | B. | f(0)+f(3)≤2f(2) | C. | f(0)+f(3)≥2f(2) | D. | f(0)+f(3)>2f(2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,3),13 | B. | (-2,3),$\sqrt{13}$ | C. | (2,-3),$\sqrt{13}$ | D. | (2,-3),13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com