已知動點M(x,y)到直線l:x=4的距離是它到點M(1,0)的距離的2倍.求動點M的軌跡C的方程.
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用動點M(x,y)到直線l:x=4的距離是它到點M(1,0)的距離的2倍,建立方程,即可求出動點M的軌跡C的方程.
解答: 解:由題意,|x-4|=2
(x-1)2+y2
,
化簡可得
x2
4
+
y2
3
=1
點評:本題考查軌跡方程,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),圓心在坐標(biāo)原點,半徑為
ab
a2+b2
的圓C1定義為橢圓C的“友好圓”.若橢圓C的離心率為e=
6
3
,且其短軸上的一個端點到右焦點F的距離為
3

(1)求橢圓C的方程及其“友好圓”圓C1的方程.
(2)過橢圓中心O的兩條弦PR與QS互相垂直,試探討四邊形PQRS與圓C1的位置關(guān)系;
(3)在(2)條件下,求四邊形PQRS面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從4名男同學(xué)中選出2人,5名女同學(xué)中選出3人,并將選出的5人排成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點是F1(0,-1)、F2(0,1),P是橢圓上一點,并且|F1F2|是|PF1|與|PF2|的等差中項,則橢圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,?ABCD中,
AB
=
a
,
AD
=
b
,H、M是AD、DC的中點,
BF
=
1
3
BC
,以
a
b
為基底分解向量
AM
HF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-|x-1|+3
(1)函數(shù)解析式用分段函數(shù)形式可表示為f(x)=
 

(2)列表并畫出該函數(shù)圖象;
(3)指出該函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①函數(shù)y=tanx的圖象關(guān)于點(kπ+
π
2
,0)(k∈Z)對稱;
②函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
③函數(shù)y=cos2x+sinx的最小值為-1;
④設(shè)θ為第二象限的角,則tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2

⑤若θ為第三象限的角,則點P(sin(cosθ),cos(cosθ))在第二象限.
其中正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式-
1
2
x2+ax>-1的解集為{x|-1<x<2},則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
2
,π),sinα=
3
5
,則sin(α+
π
4
)=
 

查看答案和解析>>

同步練習(xí)冊答案