2.已知拋物線y2=2px(p>0),過其焦點(diǎn)且斜率為2的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為x=-2.

分析 求出直線AB的方程,聯(lián)立方程組消元,根據(jù)根與系數(shù)的關(guān)系列方程解出p,從而得出準(zhǔn)線方程.

解答 解:拋物線的焦點(diǎn)為($\frac{p}{2}$,0),
∴直線AB的方程為:y=2(x-$\frac{p}{2}$),即y=2x-p,
聯(lián)立方程組$\left\{\begin{array}{l}{{y}^{2}=2px}\\{y=2x-p}\end{array}\right.$,消元得:4x2-6px+p2=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{6p}{4}=6$,∴p=4.
∴拋物線的準(zhǔn)線方程為:x=-2.
故答案為:x=-2.

點(diǎn)評(píng) 本題考查了拋物線的性質(zhì),根與系數(shù)的關(guān)系,中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,2Sn=3an-3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若等差數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足b1=a1,b7=b1•b2,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.執(zhí)行如圖所示的偽代碼,則輸出的結(jié)果的集合為{2,5,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥0\\ x+y≤4\end{array}$,則z=$\frac{2^x}{2^y}$的最小值為( 。
A.16B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若不等式x-10>0或x+2<0成立時(shí),不等式x-m>1或x+m<1(m>0)不恒成立,且若不等式x-m>1或x+m<1(m>0)成立時(shí),不等式x一10>0或x+2<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點(diǎn)E(-$\frac{p}{2}$,0),動(dòng)點(diǎn)A,B均在拋物線C:y2=2px(p>0)上,若$\overrightarrow{EA}$•$\overrightarrow{EB}$的最小值為(  )
A.-2p2B.-p2C.0D.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,有f(x)+f(-x)=2x2,當(dāng)x∈(-∞,0]時(shí),f′(x)+1<2x.若f(2+m)-f(-m)≤2m+2,則實(shí)數(shù)m的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C的方程為y2=2px(p>0),點(diǎn)R(1,2)在拋物線C上.
(1)求拋物線C的方程;
(2)過點(diǎn)Q(1,1)作直線交拋物線C于不同于R的兩點(diǎn)A,B.若直線AR,BR分別交直線l:y=2x+2于M,N兩點(diǎn),求線段MN最小時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)Tn是數(shù)列{an}的前n項(xiàng)之積,滿足Tn=1-an,n∈N*
(Ⅰ)求a1,a2,a3,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)S=T12+T22+…+Tn2,是否存在k∈N*,使|an+1-Sn|∈($\frac{1}{k+1}$,$\frac{1}{k}$)對(duì)n∈N*恒成立?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案