計算下列各式:
(1)
3a
9
2
a-3
÷
3a-7
3a13

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
考點:根式與分數(shù)指數(shù)冪的互化及其化簡運算,對數(shù)的運算性質(zhì)
專題:計算題
分析:(1)利用指數(shù)冪的運算法則即可得出;
(2)利用指數(shù)冪與對數(shù)的運算法則即可得出.
解答: 解:(1)原式=
a(
9
2
-
3
2
1
3
a(-
7
3
+
13
3
1
2
=
a
a
=1.
(2)原式=lg
32
49
×
245
8
1
2
×
4
3
=lg
4
10
4
=
1
2
點評:本題考查了指數(shù)冪與對數(shù)的運算法則,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知sinθ-cosθ=
1
3
,則cos(
π
2
-2θ)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知lg2=a,lg3=b,試用a,b表示log1512.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(-∞,-1)∪(1,+∞),對定義域內(nèi)的任意x,滿足f(x)+f(-x)=0,當x<-1時,f(x)=
1+ln(-x-1)
x+a
(a為常數(shù)),且x=2是函數(shù)f(x)的一個極值點.
(Ⅰ)若x≥2時,f(x)≥
m
x
,求實數(shù)m的取值范圍;
(Ⅱ)求證:n-2(
1
2
+
2
3
+
3
4
+…+
n
n+1
)<ln(n+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A′B′C′中,點A′在平面ABC內(nèi)的射影D在AC上,∠ACB=90°,BC=1,AC=CC′=2.
(1)證明:AC′⊥A′B;
(2)設直線AA1與平面BCC1B1的距離為
3
,求二面角A′-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知球的表面積為64π,求它的體積.
(2)已知球的體積為
500
3
π,求它的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1

(1)證明函數(shù)f(x)是R上的增函數(shù);
(2)求函數(shù)f(x)的值域;
(3)令g(x)=
x
f(x)
,判定函數(shù)g(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(2,3),B(5,4),C(7,10),若點P滿足
AP
=
AB
AC
,
(1)當λ為何值時,點P在直線y=x上;
(2)當λ范圍是多少時,點P在第三象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡下列式子
(1)(2a 
2
3
b 
1
2
)•(-
3
a 
1
4
b 
1
2
)÷(3a 
1
6
b 
5
6

(2)
lg8+lg125-lg2-lg5
lg
10
•lg0.1
-log54×log45-log0.51.

查看答案和解析>>

同步練習冊答案