15.已知數(shù)列{an}中a1=1,an+1-2an=3•(2)n-1,求an

分析 通過將an+1-2an=3•(2)n-1兩邊同時(shí)除以2n-1可知數(shù)列{$\frac{{a}_{n}}{{2}^{n-2}}$}是首項(xiàng)為2、公差為3的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論.

解答 解:an+1-2an=3•(2)n-1,
∴$\frac{{a}_{n+1}}{{2}^{n-1}}$-$\frac{{a}_{n}}{{2}^{n-2}}$=3,
又∵$\frac{{a}_{1}}{{2}^{1-2}}$=$\frac{1}{{2}^{-1}}$=2,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n-2}}$}是首項(xiàng)為2、公差為3的等差數(shù)列,
∴$\frac{{a}_{n}}{{2}^{n-2}}$=2+3(n-1)=3n-1,
∴an=(3n-1)2n-2

點(diǎn)評 本題考查數(shù)列的通項(xiàng),對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知角α的頂點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)$P(1,-\;\sqrt{3})$,則cosα=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)A(0,1),B(2,1),向量$\overrightarrow{AC}$=(3,-2),則向量$\overrightarrow{BC}$=(1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥平面ABCD,AB=PD=a,E為側(cè)棱PC的中點(diǎn),又作DF⊥PB交PB于點(diǎn)F,則PB與平面EFD所成角為(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{6}}{3}$,以原點(diǎn)O為圓心,橢圓C的長半軸為半徑的圓與直線2x-$\sqrt{2}$y+6=0相切,則橢圓C標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求函數(shù)y=2sin($\frac{1}{2}$x+$\frac{π}{3}$)-cos($\frac{1}{2}$x-$\frac{π}{6}$)+7的最小正周期、初相.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a=bcosC+csinB,a=b,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某公司生產(chǎn)某種產(chǎn)品的固定成本為150萬元,而每件產(chǎn)品的可變成本為2500元,每件產(chǎn)品的售價(jià)為3500元.若該公司所生產(chǎn)的產(chǎn)品全部銷售出去.則:
(1)分別求出總成本y1(單位:萬元),單位成本y2(單位:萬元),銷售總收人y3(單位:萬元),總利潤y4(單位:萬元)與總產(chǎn)量x(單位:件)的函數(shù)解析式;
(2)根據(jù)所求函數(shù)的圖象,對這個(gè)公司的經(jīng)濟(jì)效益作出簡單分析.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列四個(gè)命題:
①若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
②若m≥-1,則函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-2x-m)的值域?yàn)镽;
③“函數(shù)f(x)=$\frac{a-{e}^{x}}{1+a{e}^{x}}$在定義域內(nèi)是奇函數(shù)”的充分不必要條件是“a=1”;
④定義在R上的函數(shù)y=f(x)滿足條件f(x+$\frac{3}{2}$)=-f(x),且y=f(x-$\frac{3}{4}$)為奇函數(shù),則f(x)為R上的偶函數(shù).
其中正確的命題序號(hào)是②③④.

查看答案和解析>>

同步練習(xí)冊答案