分析 通過將an+1-2an=3•(2)n-1兩邊同時(shí)除以2n-1可知數(shù)列{$\frac{{a}_{n}}{{2}^{n-2}}$}是首項(xiàng)為2、公差為3的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論.
解答 解:an+1-2an=3•(2)n-1,
∴$\frac{{a}_{n+1}}{{2}^{n-1}}$-$\frac{{a}_{n}}{{2}^{n-2}}$=3,
又∵$\frac{{a}_{1}}{{2}^{1-2}}$=$\frac{1}{{2}^{-1}}$=2,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n-2}}$}是首項(xiàng)為2、公差為3的等差數(shù)列,
∴$\frac{{a}_{n}}{{2}^{n-2}}$=2+3(n-1)=3n-1,
∴an=(3n-1)2n-2.
點(diǎn)評 本題考查數(shù)列的通項(xiàng),對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com