在某校高中學(xué)生的校本課程選課過程中,規(guī)定每位學(xué)生必選一個科目,并且只選一個科目.已知某班一組與二組各有6位同學(xué),選課情況如下表:
科目
組別
15
24
總計39
現(xiàn)從一組、二組中各任選2人.
(Ⅰ)求選出的4人均選科目乙的概率;
(Ⅱ)設(shè)X為選出的4個人中選科目甲的人數(shù),求X的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(Ⅰ)設(shè)“選出的4人均選科目乙”為事件A,即事件A為“一組的確良人和二組的2人均選科目乙”,由此能求出選出的4人均選科目乙的概率.
(Ⅱ)由題意知X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列和EX.
解答: 解:(Ⅰ)設(shè)“選出的4人均選科目乙”為事件A,
即事件A為“一組的確良人和二組的2人均選科目乙”,
根據(jù)題意,得P(A)=
C
2
5
C
2
6
C
2
4
C
2
6
=
10
15
×
6
15
=
4
15

(Ⅱ)由題意知X的可能取值為0,1,2,3,
P(X=0)=
C
2
5
C
2
6
C
2
4
C
2
6
=
10
15
×
6
15
=
4
15
,
P(X=1)=
C
1
5
C
2
6
C
2
4
C
2
6
+
C
2
5
C
2
6
C
1
2
C
1
4
C
2
6
=
22
45
,
P(X=2)=
C
1
5
C
2
6
C
1
2
C
1
4
C
2
6
+
C
2
5
C
2
6
C
2
2
C
2
6
=
2
9
,
P(X=3)=
C
1
5
C
2
6
C
2
2
C
2
6
=
5
15
1
15
=
1
45
,
∴隨機(jī)變量X的分布列為:
 X 0 1 2
 P 
4
15
 
22
45
 
2
9
 
1
45
∴EX=
4
15
+1×
22
45
+2×
2
9
+3×
1
45
=1.
點(diǎn)評:本題考查概率的求法,考查離散型隨機(jī)變量的數(shù)學(xué)期望和分布列的求法,解題時要認(rèn)真審題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠2012年的生產(chǎn)總值為2000萬元,技術(shù)改造后預(yù)計以后每年的生產(chǎn)總值比上一年增加5%,問:最早在哪一年生產(chǎn)總值超過3000萬元?寫出一個計算的算法,并畫出流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公務(wù)員招聘中,既有文化考試又有面試.我省一單位在2014年公務(wù)員考試成績中隨機(jī)抽取100名考生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100)得到的頻率分布直方圖如圖所示.

(Ⅰ)求a的值以及這100名考生的平均成績;
(Ⅱ)若該單位決定在筆試成績較高的第3、4、5組中用分層抽樣抽取6名考生進(jìn)入第二輪面試.
(i)已知考生甲和考生乙的成績分別在第三組與第四組,求考生甲和考試乙同時進(jìn)入第二輪面試的概率;
(ii)單位決定在這6名考生中隨機(jī)抽取3名學(xué)生接受單位領(lǐng)導(dǎo)的面試,設(shè)第4組中有ξ名考生接受領(lǐng)導(dǎo)的面試,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+5(其中常數(shù)a,b∈R),f′(1)=3,x=-2是函數(shù)f(x)的一個極值點(diǎn).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在幾何體ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACEF⊥平面ABCD,CF=1.
(Ⅰ)求證:平面FBC⊥平面ACFE;
(Ⅱ)若M為線段EF的中點(diǎn),設(shè)平面MAB與平面FCB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a2-a=2(b+c),a+2b=2c-3.
(1)若sinC:sinA=4:
13
,求a、b、c;
(2)在(1)的條件下,求△ABC的最大角的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線F(x,y)=0上兩個不同點(diǎn)處的切線重合,則稱這條切線為曲線F(x,y)=0的“自公切線”.下列方程:①x2-y2=1;②y=x2-2|x|;③y=sinx+cosx;④|x|+1=
2-y2
對應(yīng)的曲線中不存在“自公切線”的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-x-3在x=-1時取得極值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在區(qū)間[-2,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=
2an(n為整奇數(shù))
an+1(n為正偶數(shù))
,則其前6項之和是
 

查看答案和解析>>

同步練習(xí)冊答案