8.某汽車廠上年度生產(chǎn)汽車的投入成本為10萬元/輛,出廠價為12萬元/輛,年銷售量為10000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品質(zhì)量,適度增加投入成本.若每輛車投入成本增加的比例為x(0<x<1),則出廠價相應(yīng)地提高比例為0.75x,同時預(yù)計年銷售量增加的比例為0.60x,已知年利潤=(出廠價-投入成本)×年銷售量.
(1)寫出本年度預(yù)計的年利潤y與投入成本增加的比例x的關(guān)系式;
(2)為使本年度的年利潤比上年度有所增加,則投入成本增加的比例x應(yīng)在什么范圍內(nèi)?

分析 (1)利用年利潤=(出廠價-投入成本)×年銷售量代入計算、化簡即得結(jié)論;
(2)問題即為解不等式y(tǒng)-(12-10)×10000>0(0<x<1),計算即得結(jié)論.

解答 解:(1)由題意得:y=[12(1+0.75x)-10(1+x)]×10000×(1+0.6x)(0<x<1),
整理得:y=-6000x2+2000x+20000(0<x<1);
(2)要保證本年度的年利潤比上年度有所增加,必須y-(12-10)×10000>0(0<x<1),
即-6000x2+2000x>0(0<x<1),
解得$0<x<\frac{1}{3}$,
所以投入成本增加的比例應(yīng)在$(0,\frac{1}{3})$范圍內(nèi).

點評 本題考查函數(shù)模型的選擇與應(yīng)用,考查解不等式,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A={(x,y)|y=2x},B={(x,y)|y=x2},則集合A∩B的元素個數(shù)為(  )
A.4B.6C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對任意正整數(shù),設(shè)計一個求S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$的值的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.有下列四個命題:
p1:?x,y∈R,sin(x-y)=sinx-siny;
p2:已知a>0,b>0,若a+b=1,則$\frac{1}{a}+\frac{4}$的最大值是9;
p3:直線ax+y+2a-1=0過定點(0,-l);
p4:曲線y=4x-x3在點(-1,-3)處的切線方程是y=x-2
其中真命題是(  )
A.p1,p4B.p1p2C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}{x}^{3}-ax+4,(a>0)$
 (1)討論函數(shù) f (x)的單調(diào)性;
(2)若對任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求實數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),}&{0<x≤2}\\{1-{2}^{x},}&{-2≤x≤0}\end{array}\right.$,若g(x)=|f(x)|-kx-k有3個零點,則實數(shù)k的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.[$\frac{ln3}{3}$,$\frac{1}{2e}$]D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知有窮數(shù)列:${a_1},{a_2},{a_3},…,{a_k}\;(k∈{N^*},k≥3)$的各項均為正數(shù),且滿足條件:
①a1=ak;②${a_n}+\frac{2}{a_n}=2{a_{n+1}}+\frac{1}{{{a_{n+1}}}}\;\;(n=1,2,3,…,k-1)$.
(Ⅰ)若k=3,a1=2,求出這個數(shù)列;
(Ⅱ)若k=4,求a1的所有取值的集合;
(Ⅲ)若k是偶數(shù),求a1的最大值(用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=|lgx|-cosx的零點的個數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知坐標平面內(nèi)$\overrightarrow{OA}$=(2,3),$\overrightarrow{OB}$=(2,0),$\overrightarrow{OM}$=(3,6),是直線OM上一個動點.
(1)當(dāng)$\overrightarrow{PA}$∥$\overrightarrow{PB}$時,求$\overrightarrow{OP}$的坐標;
(2)當(dāng)$\overrightarrow{PA}$•$\overrightarrow{PB}$取得最小值時,求向量$\overrightarrow{PA}$,$\overrightarrow{PB}$夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案