14.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a+$\frac{1+i}{1-i}$(a∈R)是純虛數(shù),則a=(  )
A.-2B.-1C.0D.1

分析 利用復(fù)數(shù)的運(yùn)算法則與純虛數(shù)的定義即可得出.

解答 解:∵a+$\frac{1+i}{1-i}$=a+$\frac{(1+i)(1+i)}{(1-i)(1+i)}$=a+i,
若復(fù)數(shù)a+$\frac{1+i}{1-i}$(a∈R)是純虛數(shù),
則a=0,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則與純虛數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知隨機(jī)變量X服從正態(tài)分布N(3,δ2),若P(1<X≤3)=0.3,則P(X≥5)=0.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個(gè)平面斜坡與水平面成30°的二面角,斜坡上有一條直線小路與斜坡底線成60°角,沿這條小路前進(jìn),要上升10m,求所走的路程是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b=$\frac{a}{2}$sinC.
(Ⅰ)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(Ⅱ)求tanB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(ωx-$\frac{π}{3}$)(ω>0)圖象的相鄰的兩條對(duì)稱軸之間的距離為$\frac{π}{2}$
(1)求函數(shù)f(x)在[0,$\frac{π}{2}$]上的值域;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知sinA•sinB+sinB•sinC+cos2B=1且f(C)=0,C∈($\frac{π}{2}$,π),求三邊長之比a:b:c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1+i)=2i,則z=(  )
A.1+iB.-1-iC.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2S3=a3+a7=18,則a1=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,圓O為四邊形ABCD的外接圓,過B、D兩點(diǎn)的切線交于點(diǎn)E,AE交圓O于點(diǎn)C.
(1)證明:AB•CD=BC•AD;
(2)延長DC交BE于F,若EF=FB,證明:AD∥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=|sin2x|-sin2x的最小正周期是(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案