19.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1+i)=2i,則z=( 。
A.1+iB.-1-iC.1-iD.-1+i

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:z(1+i)=2i,
∴z(1+i)(1-i)=2i(1-i),
則z=i+1.
故選:A.

點評 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l1:$\left\{\begin{array}{l}{x=-1+t}\\{y=2+t}\end{array}\right.$與l2:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=-2+tsinα}\end{array}\right.$(t為參數(shù)),若l1∥l2,則l1與l2之間的距離為(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線y=kx與函數(shù)y=tanx$(-\frac{π}{2}<x<\frac{π}{2})$的圖象交于M,N(不與坐標(biāo)原點O重合) 兩點,點A的坐標(biāo)為$(-\frac{π}{2},0)$,則$(\overrightarrow{AM}+\overrightarrow{AN})•\overrightarrow{AO}$=$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sin(α-$\frac{π}{6}$)=-$\frac{4}{5}$,則cos(α+$\frac{π}{3}$)=$\frac{4}{5}$;cos(2α-$\frac{π}{3}$)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a+$\frac{1+i}{1-i}$(a∈R)是純虛數(shù),則a=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{a-i}{3+4i}$的實部是$\frac{2}{5}$,則實數(shù)a=( 。
A.2B.$\frac{14}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為($\frac{π}{4}$,0).將函數(shù)f(x)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移$\frac{π}{2}$個單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式;
(2)定義:當(dāng)函數(shù)取得最值時,函數(shù)圖象上對應(yīng)的點稱為函數(shù)的最值點,如果函數(shù)y=F(x)=$\sqrt{3}sin\frac{πx}{k}$的圖象上至少有一個最大值點和一個最小值點在圓x2+y2=k2(k>0)的內(nèi)部或圓周上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.實數(shù)$\frac{a+i}{2-i}$(a為實數(shù))的共軛復(fù)數(shù)為( 。
A.1B.-5C.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知|$\overrightarrow{a}$+$\overrightarrow$|=6,|$\overrightarrow{a}$$-\overrightarrow$|=8,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊答案