1.某小組有3名男生和2名女生,從中任選2名同學參加演講比賽,事件A表示“2名學生全不是男生”,事件B表示“2名學生全是男生”,事件C表示“2名學生中至少有一名是男生”,則下列結(jié)論中正確的是( 。
A.A與B對立B.A與C對立
C.B與C互斥D.任何兩個事件均不互斥

分析 利用互斥事件、對立事件的定義求解.

解答 解:某小組有3名男生和2名女生,從中任選2名同學參加演講比賽,
事件A表示“2名學生全不是男生”,事件B表示“2名學生全是男生”,事件C表示“2名學生中至少有一名是男生”,
∴A與B不能同時發(fā)生,但能同時不發(fā)生,故A與B是互斥但不對立事件,故A和D都錯誤;
A與C不能同時發(fā)生,也不能同時不發(fā)生,故A與C是對立事件,故B正確;
B與C能同時發(fā)生,故B與C不是互斥事件,故C錯誤.
故選:B.

點評 本題考查對立事件、互斥事件的判斷,是基礎(chǔ)題,解題時要熟練掌握基本概念.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.橢圓C的中心在坐標原點,焦點在x軸上,焦點到短軸端點的距離為2,離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線l與橢圓C交于A,B兩點且OA⊥OB,是否存在以原點O為圓心的定圓與直線l相切?若存在求出定圓方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,點A是橢圓的右頂點,O為坐標原點,若橢圓上的一點M滿足MF1⊥MF2,|MA|=|MO|,則橢圓的離心率為( 。
A.$\frac{\sqrt{10}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{7}}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點與拋物線C2:x2=4y的焦點重合,F(xiàn)1、F2分別是橢圓C1的左、右焦點,C1的離心率e=$\frac{\sqrt{2}}{2}$,過F2的直線l與橢圓C1交于M,N兩點,與拋物線C2交于P,Q兩點.
(1)求橢圓C1的方程;
(2)當直線l的斜率k=-1時,求△PQF1的面積;
(3)在x軸上是否存在點A,$\overrightarrow{AM}$•$\overrightarrow{AN}$為常數(shù)?若存在,求出點A的坐標和這個常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中a,b,c分別為角A,B,C的對邊,且$\sqrt{3}$bcosA=asinB
(Ⅰ)求角A
(Ⅱ)若a=2$\sqrt{3}$,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知直線l1:2x-my=1,l2:(m-1)x-y=1,若l1∥l2,則實數(shù)m的值為2或-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)a=0.61.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,且b=c,橢圓的上頂點到右頂點的距離為2$\sqrt{3}$.
(1)求橢圓的方程;
(2)已知點F是橢圓的右焦點,C(m,0)是線段OF上一個動點(O為坐標原點),是否存在過點F且與x軸不垂直的直線l與橢圓交于A,B兩點,使得AC|=|BC|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合計M1
(1)求出表中M、p及圖中a的值;
(2)試估計他們參加社區(qū)服務的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

同步練習冊答案