19.兩圓x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三條公切線,則a+2b的最大值為3$\sqrt{2}$.

分析 由題意可得兩圓相外切,根據(jù)兩圓的標(biāo)準(zhǔn)方程求出圓心和半徑,可得a2+4b2=9,再利用三角換元,求a+2b的最大值.

解答 解:由題意可得兩圓相外切,兩圓的標(biāo)準(zhǔn)方程分別為 (x+a)2+y2=4,x2+(y-2b)2=1,
圓心分別為(-a,0),(0,2b),半徑分別為2和1,故有$\sqrt{{a}^{2}+4^{2}}$=3,∴a2+4b2=9,
設(shè)a=3cosα,b=$\frac{3}{2}$sinα,
∴a+2b=3cosα+3sinα=3$\sqrt{2}$sin(α+$\frac{π}{4}$),
∴sin(α+$\frac{π}{4}$)=1時(shí),a+2b的最大值為3$\sqrt{2}$
故答案為:3$\sqrt{2}$.

點(diǎn)評(píng) 本題考查兩圓的位置關(guān)系,兩圓相外切的性質(zhì),圓的標(biāo)準(zhǔn)方程的特征,得到a2+4b2=9是解題的關(guān)鍵和難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{3}{2}sinωx+\sqrt{3}{cos^2}ω\frac{x}{2}+\frac{{\sqrt{3}}}{2}({0<ω<2})$
(1)若函數(shù)f(x)圖象的一條對(duì)稱軸是直線$x=\frac{π}{4}$,求函數(shù)f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足$f({\frac{A}{ω}})=2\sqrt{3}$,a=12,$C=\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在一個(gè)二面角的一個(gè)平面內(nèi)有一點(diǎn),它到棱的距離等于到另一個(gè)面的距離的2倍,求二面角的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知m,n均為正數(shù),曲線$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1過定點(diǎn)A(1,$\sqrt{2}$),則m+n的最小值是( 。
A.2($\sqrt{2}$+1)B.4$\sqrt{2}$C.($\sqrt{2}$+1)2D.4($\sqrt{2}$+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中為真命題的是(  )
A.若x≠0,則x+$\frac{1}{x}$≥2
B.若直線x-ay=0與直線x+ay=0互相垂直,則a=1
C.命題“若x2=1,則x=1或x=-1”的逆否命題為“若x≠1且x≠-1,則x2≠1”
D.一個(gè)命題的否命題為真,則它的逆否命題一定為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,SD=2,E為棱SB上的一點(diǎn),且SE=2EB,CE與平面SAB所成角的正弦值為$\frac{\sqrt{30}}{10}$.
(1)證明:DE⊥CE
(2)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且2cosA=$\sqrt{4cosA-1}$.
(1)若a2-c2=b2-mbc,求實(shí)數(shù)m的值;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某山路坡面坡度i=1:$\sqrt{399}$,沿此山路向上前進(jìn)200m,升高了10m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若指數(shù)函數(shù)y=f(x)的圖象過點(diǎn)P(-2,81),則f($\frac{1}{2}$)=$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案