19.若角α的終邊落在x軸的上方,且-4≤α≤4,則角α的取值集合為[-4,-π)∪(0,π).

分析 寫出終邊落在x軸上方的角的集合,分別取k=-1,0,1,求出α的范圍,與-4≤α≤4取交集得答案.

解答 解:落在x軸上方的角的集合為{α|2kπ<α<π+2kπ,k∈Z},
取k=-1,得-2π<α<-π;
取k=0,得0<α<π;
取k=1,得2π<α<3π.
-4≤α≤4,取交集得:α∈[-4,-π)∪(0,π).
故答案為:[-4,-π)∪(0,π).

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,考查了象限角和軸線角,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:
(1)${(ln\sqrt{5}+1)^0}+\frac{3}{2}•{(2\frac{1}{4})^{-\frac{1}{2}}}$-lg10;
(2)2cos$\frac{π}{2}+\frac{3}{4}tan\frac{π}{4}+{cos^2}\frac{π}{6}+sin\frac{3π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,已知a6+a9+a13+a16=20,則S21等于( 。
A.100B.105C.200D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.y=cos($\frac{x}{2}$-$\frac{π}{6}$)(-π≤x≤π)的值域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-1,1]C.[-$\frac{1}{2}$,1]D.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.經(jīng)過P(-2,0)且平行于$\overrightarrow{a}$=(0,3)的直線方程為3x-y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD,AB=BD=CD=1,則該三棱錐外接球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}為等差數(shù)列,且a1=8,a4=2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sinx+cosx=a(0$≤a≤\sqrt{2}$),則sinnx+cosnx=($\frac{a+\sqrt{2-{a}^{2}}}{2}$)n+($\frac{a-\sqrt{2-{a}^{2}}}{2}$)n(關(guān)于a的表達(dá)式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=|x2-a2|(α>0),動(dòng)點(diǎn)P(m,n)滿足f(m)=f(n),且m<n<0,若動(dòng)點(diǎn)P(m,n)的軌跡直線x+y+1=0沒有公共點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{2}}{2}$,+∞)D.(0,$\frac{1}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案