13.設函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是互不相等的實數(shù)),則$\frac{a}{{f}^{'}(a)}$+$\frac{{f}^{'}(b)}$+$\frac{c}{{f}^{'}(c)}$=0.

分析 分別求出f′(a)=(a-b)(a-c),f′(b)=(b-a)(b-c),f′(c)=(c-a)(c-b).由此能求出$\frac{a}{{f}^{'}(a)}$+$\frac{{f}^{'}(b)}$+$\frac{c}{{f}^{'}(c)}$.

解答 解:∵函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是互不相等的實數(shù)),
∴f(x)=x3-(a+b+c)x2+(ab+bc+ca)x-abc,
∴f′(x)=3x2-2(a+b+c)x+ab+bc+ca.
又f′(a)=(a-b)(a-c),
同理f′(b)=(b-a)(b-c),
f′(c)=(c-a)(c-b).
∴$\frac{a}{{f}^{'}(a)}$+$\frac{{f}^{'}(b)}$+$\frac{c}{{f}^{'}(c)}$
=$\frac{a}{(a-b)(a-c)}+\frac{(b-a)(b-c)}$+$\frac{c}{(c-a)(c-b)}$
=$\frac{a(b-c)-b(a-c)+c(a-b)}{(a-b)(a-c)(b-c)}$
=0.
故答案為:0.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,在三棱柱ABC-A1B1C1中,各棱長均相等,且∠A1AB=∠A1AC=∠BAC=60°,則AB1與底面ABC所成角的正弦值為(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求適合下列條件的直線方程:
(1)經(jīng)過點P(3,2),且在兩坐標軸上的截距相等;
(2)直線過點(-3,4),且在兩坐標軸上的截距之和為12;
(3)直線過點(5,10),且到原點的距離為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.甲、乙兩個生物小組分別獨立開展對某生物離開恒溫箱的成活情況進行研究,每次試驗一個生物,甲組能使生物成活的概率為$\frac{1}{3}$,乙組能使生物成活的概率為$\frac{1}{2}$,假定試驗后生物成活,則稱該試驗成功,如果生物不成話.則稱該次試驗是失敗的.
(1)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(2)若甲、乙兩小組各進行2次試驗,求甲小組實驗成功的次數(shù)多于乙小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若a2x=8,則$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$的值等于$\frac{57}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知(a-3)${\;}^{-\frac{1}{5}}$<(1+2a)${\;}^{-\frac{1}{5}}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.過點(4,7)且與圓x2+y2=16相切的直線方程是33x-56y+260=0或x=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.直線l與圓x2+(y-2)2=2相切,且直線l在兩坐標軸上的截距相等,則這樣的直線l有4條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.拋物線y2=-2px(p>0)的準線與圓(x-1)2+y2=1相切,則此拋物線上一點P(-3,m)到焦點的距離為(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習冊答案