2.直線l與圓x2+(y-2)2=2相切,且直線l在兩坐標(biāo)軸上的截距相等,則這樣的直線l有4條.

分析 可設(shè)兩坐標(biāo)軸上截距相等(在坐標(biāo)軸上截距不為0)的直線方程為x+y=a,利用圓心到直線的距離等于半徑,即可求得a的值,從而可求得直線方程;另外需要考慮坐標(biāo)軸上截距都為0的情況.

解答 解:設(shè)兩坐標(biāo)軸上截距相等(在坐標(biāo)軸上截距不為0)的直線l方程為x+y=a,
∵l與圓x2+(y-2)2=2相切,
∴$\frac{|0+2-a|}{\sqrt{2}}$=$\sqrt{2}$,
解得a=0或-4,
∴l(xiāng)的方程為:x+y+4=0;
當(dāng)坐標(biāo)軸上截距都為0時(shí),設(shè)方程為y=kx,則$\frac{2}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,∴k=±1,∴y=±2x,
故答案為:4.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,易錯(cuò)點(diǎn)在于忽略坐截距都為0時(shí)相切的情況,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)點(diǎn)P分有向線段$\overrightarrow{{P}_{1}{P}_{2}}$的比是λ,且點(diǎn)P在有向線段$\overrightarrow{{P}_{1}{P}_{2}}$的延長線上,則λ的取值范圍是( 。
A.(-∞,-1)B.(-1,0)C.(-∞,0)D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是互不相等的實(shí)數(shù)),則$\frac{a}{{f}^{'}(a)}$+$\frac{{f}^{'}(b)}$+$\frac{c}{{f}^{'}(c)}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)已知y=f(x)是定義在R的奇函數(shù),且在R上為增函數(shù).求不等式f(4x-5)>0的解集;
(2)已知偶函數(shù)f(x)(x∈R),當(dāng)x≥0時(shí).f(x)=x(5-x)+1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某單位有三個(gè)科室,為實(shí)現(xiàn)減員增效,從每個(gè)科室抽調(diào)2人去參加再就業(yè)培訓(xùn),培訓(xùn)后這6人中有2人返回單位,但不回到原科室工作,且每個(gè)科室至多安排1人,則共有多少種不同的安排方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且$\frac{c-4a}$=$\frac{cos(A+B)}{cosB}$.
(1)求cosB的值;
(2)若△ABC的面積為$\sqrt{15}$,且a=c+2,求b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若a=2${\;}^{-\frac{1}{3}}$,b=$\frac{1}{\sqrt{2}}$,求a${\;}^{-\frac{1}{2}}$•b$\sqrt{a^{2}}$•($\sqrt{{a}^{3}}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=CC1,M、N、P分別是BB1、A1C1、B1C1的中點(diǎn).
(1)求證:CB1⊥平面ABC1;
(2)求證:面MNP∥面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)的圖象的相鄰兩對(duì)稱軸間的距離為$\frac{π}{2}$,則當(dāng)x∈[-$\frac{π}{2}$,0]時(shí),f(x)的最大值和單調(diào)增區(qū)間分別為( 。
A.1,[-$\frac{π}{2}$,-$\frac{π}{6}$]B.1,[-$\frac{π}{2}$,-$\frac{π}{12}$]C.$\sqrt{3}$,[-$\frac{π}{6}$,0]D.$\sqrt{3}$,[-$\frac{π}{12}$,0]

查看答案和解析>>

同步練習(xí)冊(cè)答案