20.已知函數(shù)f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$),其中x∈R,下列結(jié)論中正確的是( 。
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對稱軸是 $x=\frac{π}{3}$
C.f(x)的最大值為2
D.將函數(shù)$y=\sqrt{3}sin2x$的圖象向左平移$\frac{π}{6}$個單位得到函數(shù)f(x)的圖象

分析 根據(jù)正弦函數(shù)的圖象的對稱性、正弦函數(shù)的周期性、奇偶性以及最值,判斷各個選項是否正確,從而得出結(jié)論.

解答 解:對于函數(shù)f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$),其中x∈R,顯然它不是偶函數(shù),故排除A;
由于當x=$\frac{π}{3}$時,f(x)=0,故f(x)的圖象不關(guān)于直線x=$\frac{π}{3}$對稱,故排除B;
由于函數(shù)f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)的最大值為$\sqrt{3}$,故排除C;
由于將函數(shù)$y=\sqrt{3}sin2x$的圖象向左平移$\frac{π}{6}$個單位得到函數(shù)y=$\sqrt{3}$sin2(x+$\frac{π}{6}$)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)=f(x)的圖象,
故D正確,
故選:D.

點評 本題主要考查正弦函數(shù)的圖象的奇偶性、對稱性、正弦函數(shù)的周期性以及最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(1)求a的值;
(2)求證:對任意x1、x2∈[0,2],都有|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當x∈(0,+∞)時,函數(shù)f(x)=$\frac{x}{e^x}$的值域為$(0,\frac{1}{e}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l經(jīng)過直線x-y+2=0和2x+y+1=0的交點,且直線l與直線x-3y+2=0平行,則直線l的方程為x-3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,連接其四個頂點組成的菱形面積為$8\sqrt{3}$,且a2、c2、b2成等差數(shù)列
(1)求橢圓E的方程;
(2)若斜率為1的直線l與橢圓E交于A、B兩點,且點P(-3,2)在線段AB的垂直平分線上,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正項等比數(shù)列{an}的前n項和為Sn,且$\frac{S_4}{S_2}$=10,a3=9.
(1)求數(shù)列{an}的通項公式與前n項和為Sn;
(2)若數(shù)列{bn}的通項公式為$\frac{b_n}{{2{a_n}}}$=n-3,
(。┣髷(shù)列{bn}的前n項和為Tn
(ⅱ)探究:數(shù)列{bn}是否有最小項?若沒有,請通過計算得到最小項的項數(shù);若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某單位有男職工600名,女職工400人,在單位想了解本單位職工的運動狀態(tài),根據(jù)性別采取分層抽樣的方法從全體職工中抽取100人,調(diào)查他們平均每天運動的時間(單位:小時),統(tǒng)計表明該單位職工平均每天運動的時間范圍是[0,2].若規(guī)定平均每天運動的時間不少于1小時的為“運動達人”,低于1小時的為“非運動達人”.根據(jù)調(diào)查的數(shù)據(jù),按性別與是否為運動達人進行統(tǒng)計,得到如下2×2列聯(lián)表.
運動時間
性別
運動達人非運動達人合計
36
26
合計100
(Ⅰ)請根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補充完整,并通過計算判斷能否在犯錯誤概率不超過0.025的前提下認為性別與是否為運動達人有關(guān);
(Ⅱ)將此樣本的頻率估計為總體的概率,隨機調(diào)查該單位的3名男職工,設(shè)調(diào)查的3人中運動達人的人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項和記為Sn,若a4+a6+a8=15,則S11的值為( 。
A.55B.$\frac{55}{2}$C.165D.$\frac{165}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將點P的直角坐標(-$\sqrt{3}$,-1)化成極坐標( 。
A.(2,$\frac{π}{3}$)B.(2,$\frac{π}{2}$)C.(2,$\frac{4π}{3}$)D.(2,$\frac{7π}{6}$)

查看答案和解析>>

同步練習(xí)冊答案