分析 令sinx+cosx=t,則sinxcosx=$\frac{{t}^{2}-1}{2}$,則有y=t+$\frac{{t}^{2}-1}{2}$=$\frac{1}{2}$t2+t-$\frac{1}{2}$,由x范圍,可得t的取值范圍,從而可求函數(shù)y的最值.
解答 解:令sinx+cosx=t,則sinxcosx=$\frac{{t}^{2}-1}{2}$,
∴y=t+$\frac{{t}^{2}-1}{2}$=$\frac{1}{2}$t2+t-$\frac{1}{2}$=$\frac{1}{2}$(t+1)2-1;,
∵x∈(-$\frac{π}{2}$,0),
∴t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈(-1,1),
∴sinx+cosx+sinxcosx的范圍為:(-1,1).
點評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象和性質(zhì),屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=0 | B. | f(x)=2 | C. | f(x)=x2-1 | D. | f(x)=x-$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-1) | B. | (-2,-1) | C. | (-1,-2) | D. | (-1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com