5.已知f(x)=ax2-(a+1)x+b.
(1)若f(x)≥0的解集為{x|-$\frac{1}{5}$≤x≤1}求實數(shù)a,b的值;
(2)當(dāng)a>0,b=1時,求關(guān)于x的不等式f(x)<0的解集.

分析 (1)根據(jù)解集得出方程的根,利用根與系數(shù)的關(guān)系求解即可.
(2)利用條件得出(x)=ax2-(a+1)x+1=(ax-1)(x-1),求解根x=1,或x=$\frac{1}{a}$,分類判斷大小,利用二次函數(shù)性質(zhì)得出不等式的解集.

解答 解:(1)∵f(x)=ax2-(a+1)x+b.
f(x)≥0的解集為{x|-$\frac{1}{5}$≤x≤1}
∴$\frac{a+1}{a}$=$-\frac{1}{5}$+1=$\frac{4}{5}$,a=-5,
$\frac{a}$=$-\frac{1}{5}$,b=1,
∴f(x)=-5x2+4x+1.
(2)a>0,b=1
f(x)=ax2-(a+1)x+1=(ax-1)(x-1),
∴x=1,或x=$\frac{1}{a}$,
當(dāng)a=1時,f(x)<0的解集為∅;
當(dāng)a>1時,f(x)<0的解集為($\frac{1}{a}$,1)
當(dāng)0<a<1時,f(x)<0的解集為(1,$\frac{1}{a}$)

點評 本題簡單的考查了二次函數(shù)的性質(zhì),二次方程,二次不等式的關(guān)系,屬于簡單的綜合題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,直線l的方程為x+y-8=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}\right.(α為參數(shù))$.
(1)已知極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸,若點P的極坐標(biāo)為$(4\sqrt{2},\frac{π}{4})$,請判斷點P與曲線C的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若sin$\frac{α}{2}$=-$\frac{1}{2}$,α∈[2π,3π],則α=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=lg(x+2)(x>-2),當(dāng)y<0時,x的取值范圍是(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某人循一圓形跑道作等速跑步,每分鐘經(jīng)過的弧所對的圓心角是2$\frac{6}{7}$弧度,若此人于14分40秒內(nèi)共跑了5280公尺,試求跑道的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=cos(2x-$\frac{π}{6}$)-$\sqrt{3}$cos2x.
(1)求函數(shù)f(x)的最小值,并求函數(shù)f(x)取得最小值時x值的集合;
(2)若f($\frac{1}{2}$α+$\frac{π}{6}$)=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,已知AB=4,BC=2,CA=3,試求cos∠ACB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知-$\frac{π}{2}$<x<0,求sinx+cosx+sinxcosx的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若點(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$)在角α的終邊上,則sinα的值為( 。
A.$-\frac{\sqrt{3}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案