13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,若函數(shù)y=f[f(x)+K]恰有3個(gè)不同零點(diǎn),則K的取值范圍是( 。
A.(-∞,0)B.(-∞,-1]C.[-1.0]D.[-1,1)

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$的圖象,從而可得f(x)=-K有兩個(gè)不同的解,f(x)=2-K有一個(gè)解,從而結(jié)合圖象可得-K≤1且2-K>1,從而解得.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$的圖象如右圖,
∵函數(shù)y=f[f(x)+K]恰有3個(gè)不同零點(diǎn),
∴f(x)+K=0或f(x)+K=2,
∴f(x)=-K與f(x)=2-K共有三個(gè)不同的解,
∵2-K>-K,
∴f(x)=-K有兩個(gè)不同的解,f(x)=2-K有一個(gè)解,
∴-K≤1且2-K>1,
即-1≤K<1,
故選:D.

點(diǎn)評(píng) 本題考查了數(shù)形結(jié)合的思想應(yīng)用及分段函數(shù)的應(yīng)用,同時(shí)考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)f(x)=-x(x-a)在[-1,a]上的最大值為a,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)A(1,1),B(3,5),C(7,3),D(5,-1).
(1)求證:$\overrightarrow{AC}$⊥$\overrightarrow{BD}$;
(2)設(shè)$\overrightarrow{AC}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.把函數(shù)y=sinx的圖象所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變)而得到的圖象對(duì)應(yīng)的解析式可以是( 。
A.y=sin2xB.y=sin$\frac{1}{2}$xC.y=2sinxD.y=$\frac{1}{2}$sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)全集為R,A={x|x2+px+12=0},B={x|x2-5x+q=0}.
(1)若(∁RA)∩B={2},A∩(∁RB)={4},求A∪B;
(2)若q=6,A∪B=B,求p的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>b>0.在下列各式中用正確的不等號(hào)填空:
A.3a>3b  B.0.3a<0.3b  C.log0.3a<log0.3b  D.log3a>log3b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知sinα+cosα=$\frac{7}{13}$,則sinαcosα=$\frac{60}{169}$;sin2α=$\frac{120}{169}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2sinx+cosx的最小值為-$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z=1-2i,則適合不等式|z+ai|≤$\sqrt{2}$的實(shí)數(shù)a的取值范圍是[1,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案